40 resultados para Riparian plants
Resumo:
Vertebrates play a major role in dispersing seeds of fleshy-fruited alien plants. However, we know little of how the traits of alien fleshy fruits compare with indigenous fleshy fruits, and how these differences might contribute to invasion success. In this study, we characterised up to 38 fruit morphology, pulp nutrient and phenology traits of an assemblage of 34 vertebrate-dispersed alien species in south-eastern Queensland, Australia. Most alien fruits were small (81%\15 mm in mean width), and had watery fruit pulps that were high in sugars and low in nitrogen and lipids. When compared to indigenous species, alien fruits had significantly smaller seeds. Further, alien fruit pulps contained more sugar and more variable (and probably greater) nitrogen per pulp wet weight, and species tended to have longer fruiting seasons than indigenous species. Our analyses suggest that fruit traits could be important in determining invasiveness and could be used to improve pre- and post-border weed risk assessment.
Resumo:
Aim: Resolving the origin of invasive plant species is important for understanding the introduction histories of successful invaders and aiding strategies aimed at their management. This study aimed to infer the number and origin(s) of introduction for the globally invasive species, Macfadyena unguis-cati and Jatropha gossypiifolia using molecular data. Location: Native range: Neotropics; Invaded range: North America, Africa, Europe, Asia, Pacific Islands and Australia. Methods: We used chloroplast microsatellites (cpSSRs) to elucidate the origin(s) of introduced populations and calculated the genetic diversity in native and introduced regions. Results: Strong genetic structure was found within the native range of M. unguis-cati, but no genetic structuring was evident in the native range of J. gossypiifolia. Overall, 27 haplotypes were found in the native range of M. unguis-cati. Only four haplotypes were found in the introduced range, with more than 96% of introduced specimens matching a haplotype from Paraguay. In contrast, 15 haplotypes were found in the introduced range of J. gossypiifolia, with all invasive populations, except New Caledonia, comprising multiple haplotypes. Main conclusions: These data show that two invasive plant species from the same native range have had vastly different introduction histories in their non-native ranges. Invasive populations of M. unguis-cati probably came from a single or few independent introductions, whereas most invasive J. gossypiifolia populations arose from multiple introductions or alternatively from a representative sample of genetic diversity from a panmictic native range. As introduced M. unguis-cati populations are dominated by a single haplotype, locally adapted natural enemies should make the best control agents. However, invasive populations of J. gossypiifolia are genetically diverse and the selection of bio-control agents will be considerably more complex.
Resumo:
Exotic and invasive woody vines are major environmental weeds of riparian areas, rainforest communities and remnant natural vegetation in coastal eastern Australia, where they smother standing vegetation, including large trees, and cause canopy collapse. We investigated, through glasshouse resource manipulative experiments, the ecophysiological traits that might facilitate faster growth, better resource acquisition and/or utilization and thus dominance of four exotic and invasive vines of South East Queensland, Australia, compared with their native counterparts. Relative growth rate was not significantly different between the two groups but water use efficiency (WUE) was higher in the native species while the converse was observed for light use efficiency (quantum efficiency, AQE) and maximum photosynthesis on a mass basis (Amax mass). The invasive species, as a group, also exhibited higher respiration load, higher light compensation point and higher specific leaf area. There were stronger correlations of leaf traits and greater structural (but not physiological) plasticity in invasive species than in their native counterparts. The scaling coefficients of resource use efficiencies (WUE, AQE and respiration efficiency) as well as those of fitness (biomass accumulated) versus many of the performance traits examined did not differ between the two species-origin groups, but there were indications of significant shifts in elevation (intercept values) and shifts along common slopes in many of these relationships – signalling differences in carbon economy (revenue returned per unit energy invested) and/or resource usage. Using ordination and based on 14 ecophysiological attributes, a fair level of separation between the two groups was achieved (51.5% explanatory power), with AQE, light compensation point, respiration load, WUE, specific leaf area and leaf area ratio, in decreasing order, being the main drivers. This study suggests similarity in trait plasticity, especially for physiological traits, but there appear to be fundamental differences in carbon economy and resource conservation between native and invasive vine species.
Resumo:
The productivity of containerized and bare-rooted plants of strawberry (Fragaria * ananassa) was investigated over 4 years in southeastern Queensland, Australia. In the first experiment, plants in small, 75-cm3 cells were compared with bare-rooted plants of 'Festival' and 'Sugarbaby'. A similar experiment was conducted in year 2 with these two cultivars, plus 'Rubygem'. In year 3, plants in large, 125-cm3 cells were compared with small and large bare-rooted plants of 'Festival' and 'Rubygem'. Treatments in each of these experiments were planted on the same date. In the final experiment, plants in large cells and bare-rooted plants of 'Festival' were planted in late March, early April, mid-April, or early May. The plants grown in small cells produced 60% to 85% of the yields of the bare-rooted plants, whereas the yield of plants in large cells was equal to that of the bare-rooted plants. Containerized plants are twice as expensive as bare-rooted plants (A$0.60 vs. A$0.32) (A$=Australian dollar), and gave only similar or lower returns than the bare-rooted plants (A$0.54 to A$3.73 vs. A$1.40 to A$4.09). It can be concluded that containerized strawberry plants are not economically viable in subtropical Queensland under the current price structure and growing system. There was a strong relationship between yield and average plant dry weight (leaves, crowns, and roots) in 'Festival' in the last three experiments, where harvesting continued to late September or early October. Productivity increased by about 18 g for each gram increase in plant dry weight, indicating the dependence of fruit production on vegetative growth in this environment.
Resumo:
This chapter describes poisoning associated with consumption of pyrrolizidine alkaloid (PA)-containing plants (Crotalaria spp., Heliotropium spp. and Senecio spp.) by cattle and horses in rangelands of northern Australia, as well as the risks for meat quality of PA residues and potential health hazards to consumers.
Resumo:
This book provides for the first time a detailed host list for all the fruit fly species (Tephritidae) known from Australia. It includes available distribution, male lure and host plant information for the 278 species currently recorded from Australia (including Torres Strait Islands but excluding Christmas and Cocos (Keeling) islands in the Indian Ocean). This total includes 269 described species plus nine undescribed species of Tephritinae. Thirteen fruit fly specialists from throughout Australia collaborated with QDPI in the production of this book. It provides an invaluable reference source for anyone involved in fruit fly research, ecological studies, pre- and post-harvest control, regulation, quarantine and market access.
Resumo:
Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) is a major environmental weed in coastal Queensland, Australia. There is a lack of quantitative data on its leaf chemistry and its impact on soil properties. Soils from infested vs uninfested areas, and leaves of M. unguis-cati and three co-occurring vine species (one exotic, two native) were collected at six sites (riparian and non-riparian) in south-eastern Queensland. Effects of invasion status, species, site and habitat type were examined using univariate and multivariate analyses. Habitat type had a greater effect on soil nutrients than on leaf chemistry. Invasion effect of M. unguis-cati on soil chemistry was more pronounced in non-riparian than in riparian habitat. Significantly higher values were obtained in M. unguis-cati infested (vs. uninfested) soils for ~50% of traits. Leaf ion concentrations differed significantly between exotic and native vines. Observed higher leaf-nutrient load (especially nitrogen, phosphorus and potassium) in exotic plants aligns with the preference of invasive plant species for disturbed habitats with higher nutrient input. Higher load of trace elements (aluminium, boron, cadmium and iron) in its leaves suggests that cycling of heavy-metal ions, many of which are potentially toxic at excess level, could be accelerated in soils of M. unguis-cati-invaded landscape. Although inferences from the present study are based on correlative data, the consistency of the patterns across many sites suggests that M. unguis-cati may improve soil fertility and influence nutrient cycling, perhaps through legacy effects of its own litter input.
Resumo:
Introduced as an ornamental vine, cat's claw creeper Dolichandra unguis-cati (syn. Macfadyena unguis-cati) has invaded coastal and subcoastal areas of subtropical eastern Australia. Two varieties have been indentified, one of which ('short-pod') is found throughout south-eastern Australia, while the other ('long-pod') appears to be restricted to several sites in south-eastern Queensland. We compared the growth and biomass allocation patterns of the two varieties in the field over a 22-month period to determine if a higher growth rate and/or more efficient allocation of biomass may contribute to this disparity in distribution. The long-pod variety produced greater aboveground and total biomass than the short-pod variety in both riparian and non-riparian zones. Belowground the two varieties produced a similar number of tubers and overall biomass, though the long-pod variety allocated a smaller portion of its carbon belowground. High growth rates and greater biomass allocation aboveground are characteristic of invasive species, allowing them to outcompete and crowd out existing vegetation. There was no significant site by variety interaction, an indication of consistency in variety performance across riparian and non-riparian sites. Results from our study suggest that differences in growth and biomass allocations are unlikely to have contributed to the disparity in distribution of the two varieties. Despite currently occupying a relatively small range, the long-pod variety may be a more adept invader than the short-pod variety, and could become more prevalent in the future. © 2012 CSIRO.
Resumo:
The effect of time of planting and plant size on the performance of ‘Festival’ and ‘Florida Fortuna’ strawberry (Fragaria ×ananassa) plants was studied at Nambour in southeastern Queensland, Australia, over 2 years. The main objective of the work was to determine whether small plants yielded proportionally less than large plants as planting was delayed. First, bare-rooted transplants of ‘Festival’ were divided into small (crown diameters ranging from 6 to 10 mm) or large plants (10 to 17 mm) and planted in late March, mid-April, or late April. Second, transplants of ‘Florida Fortuna’ were divided into small (5 to 8 mm) or large plants (8 to 17 mm) and planted in early April, mid-April, or early May. The early planting for each cultivar corresponded with the time that the transplants are first available from commercial strawberry nurseries. Yields were generally greater in plants planted in late March/early April compared with plants planted later. Differences in yield between the small and large plants were consistent across the different times of planting, with the small plants always having lower yields. Small transplants are an issue for the productivity of strawberry fields in this environment whether they are planted early or late. Producers should consider paying a premium for large transplants delivered early in the season.
Resumo:
The effect of plastic high tunnels on the performance of two strawberry (Fragaria ×ananassa) cultivars (Festival and Rubygem) and two breeding lines was studied in southeastern Queensland, Australia, over 2 years. Production in this area is affected by rain, with direct damage to the fruit and the development of fruit disease before harvest. The main objective of the study was to determine whether plants growing under tunnels had less rain damage, a lower incidence of disease, and higher yields than plants growing outdoors. Plants growing under the tunnels or outdoors had at best only small differences in leaf, crown, root, and flower and immature fruit dry weight. These responses were associated with relatively similar temperatures and relative humidities in the two growing environments. Marketable yields were 38% higher under the tunnels compared with yields outdoors in year 1, and 24% higher in year 2, mainly due to less rain damage. There were only small differences in the incidences of grey mold (Botrytis cinerea) and small and misshaped fruit in the plants growing under the tunnels and outdoors. There were also only small differences in postharvest quality, total soluble solids, and titratable acidity between the two environments. These results highlight the potential of plastic high tunnels for strawberry plants growing in subtropical areas that receive significant rainfall during the production season.
Resumo:
Experiments were conducted over 5 years to understand the seasonal phenology of bare-rooted ?Festival? strawberry plants (Fragaria ?ananassa) growing at Nambour in southeastern Queensland, Australia. Yields ranged from 661 to 966 g/plant, and average seasonal fruit fresh weight ranged from 15 to 18 g. The growth of the leaves, crowns, roots, flowers and fruit over time followed a linear or sigmoid pattern. Maximum values of leaf, crown and root dry weight towards the end of the growing season about 190 days after planting were 30, 15 and 7 g/plant, respectively. The rates of leaf and crown growth were lower than those achieved in California under a Mediterranean climate. There were strong relationships between the allocation of dry matter to the leaves, crowns and roots and plant dry weight. Allocation to the leaves, and especially to the crowns and roots, declined as the plants grew. The number of fruit/plant increased initially over time with a decline later in the season. Average fruit fresh weight was generally higher early in the season and then declined as fruit production increased. There were strong relationships between the growth of the whole plant and the growth of the flowers and immature fruit, and leaf expansion, across the growing season and across the 5 different years. These results indicate that seasonal growth and potential productivity were strongly linked to the expansion of the leaves in this environment.
Resumo:
Campylobacter is an important food borne pathogen, mainly associated with poultry. A lack of through-chain quantitative Campylobacter data has been highlighted within quantitative risk assessments. The aim of this study was to quantitatively and qualitatively measure Campylobacter and Escherichia coli concentration on chicken carcasses through poultry slaughter. Chickens (n = 240) were sampled from each of four flocks along the processing chain, before scald, after scald, before chill, after chill, after packaging and from individual caeca. The overall prevalence of Campylobacter after packaging was 83% with a median concentration of 0.8 log10 CFU/mL. The processing points of scalding and chilling had significant mean reductions of both Campylobacter (1.8 and 2.9 log10 CFU/carcase) and E. coli (1.3 and 2.5 log10 CFU/carcase). The concentration of E. coli and Campylobacter was significantly correlated throughout processing indicating that E. coli may be a useful indicator organism for reductions in Campylobacter concentration. The carriage of species varied between flocks, with two flocks dominated by Campylobacter coli and two flocks dominated by Campylobacter jejuni. Current processing practices can lead to significant reductions in the concentration of Campylobacter on carcasses. Further understanding of the variable effect of processing on Campylobacter and the survival of specific genotypes may enable more targeted interventions to reduce the concentration of this poultry associated pathogen.