38 resultados para RESPONSE COMPLEXITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of cropping histories (sugarcane, maize and soybean), tillage practices (conventional tillage and direct drill) and fertiliser N in the plant and 1st ratoon (1R) crops of sugarcane were examined in field trials at Bundaberg and Ingham. Average yields at Ingham (Q200) and Bundaberg (Q151) were quite similar in both the plant crop (83 t/ha and 80 t/ha, respectively) and the 1R (89 t/ha v 94 t/ha, respectively), with only minor treatment effects on CCS at each site. Cane yield responses to tillage, break history and N fertiliser varied significantly between sites. There was a 27% yield increase in the plant crop from the soybean fallow at Ingham, with soybeans producing a yield advantage over continuous cane, but there were no clear break effects at Bundaberg - possibly due to a complex of pathogenic nematodes that responded differently to soybeans and maize breaks. There was no carryover benefit of the soybean break into the 1R crop at Ingham, while at Bundaberg the maize break produced a 15% yield advantage over soybeans and continuous cane. The Ingham site recorded positive responses to N fertiliser addition in both the plant (20% yield increase) and 1R (34% yield increase) crops, but there was negligible carryover benefit from plant crop N in the 1R crop, or of a reduced N response after a soybean rotation. By contrast, the Bundaberg site showed no N response in any history in the plant crop, and only a small (5%) yield increase with N applied in the 1R crop. There was again no evidence of a reduced N response in the 1R crop after a soybean fallow. There were no significant effects of tillage on cane yields at either site, although there were some minor interactions between tillage, breaks and N management in the 1R crop at both sites. Crop N contents at Bundaberg were more than 3 times those recorded at Ingham in both the plant and 1R crops, with N concentrations in millable stalk at Ingham suggesting N deficiencies in all treatments. There was negligible additional N recovered in crop biomass from N fertiliser application or soybean residues at the Ingham site. There was additional N recovered in crop biomass in response to N fertiliser and soybean breaks at Bundaberg, but effects were small and fertiliser use efficiencies poor. Loss pathways could not be quantified, but denitrification or losses in runoff were the likely causes at Ingham while leaching predominated at Bundaberg. Results highlight the complexity involved in developing sustainable farming systems for contrasting soil types and climatic conditions. A better understanding of key sugarcane pathogens and their host range, as well as improved capacity to predict in-crop N mineralisation, will be key factors in future improvements to sugarcane farming systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding plant demography and plant response to herbivory is critical to the selection of effective weed biological control agents. We adopt the metaphor of 'filters' to suggest how agent prioritisation may be improved to narrow our choices down to those likely to be most effective in achieving the desired weed management outcome. Models can serve to capture our level of knowledge (or ignorance) about our study system and we illustrate how one type of modelling approach (matrix models) may be useful in identifying the weak link in a plant life cycle by using a hypothetical and an actual weed example (Parkinsonia aculeata). Once the vulnerable stage has been identified we propose that studying plant response to herbivory (simulated and/or actual) can help identify the guilds of herbivores to which a plant is most likely to succumb. Taking only potentially effective agents through the filter of host specificity may improve the chances of releasing safe and effective agents. The methods we outline may not always lead us definitively to the successful agent(s), but such an empirical, data-driven approach will make the basis for agent selection explicit and serve as testable hypotheses once agents are released.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Live vaccines containing attenuated parasite strains are increasingly used to control chicken coccidiosis. In this paper antibody responses elicited by infections with wild-type and attenuated strains of Eimeria tenella and E.necatrix were characterized by immunoblotting and ELISA with homologous and heterologous antisera. Few differences between antisera from birds infected with wild and attenuated strains of E. tenella were evident in immunoblots conducted with merozoite antigen preparations from both E. tenella strains, however the reactivity of sera raised in birds infected with the wild-type strain was noticeably more intense. In ELISAs conducted with merozoite antigen preparations, antisera from birds infected with the wild-type strains of E. tenella and E. necatrix consistently produced a significantly higher (P < 0.05) antibody response than antisera from birds infected with the attenuated strains. Likewise, avidity ELISAs conducted with the E. tenella strains demonstrated that antibodies in birds infected with the wild-type strain were of significantly higher avidity (P < 0.05) than antibodies in birds infected with the attenuated strain. The differences in the antibody responses are probably due to changes in the attenuated strain as a result of selection for precocious development and the less severe tissue damage and inflammation of the intestine resulting from infection with the attenuated strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This section outlines the most important issues addressed in the management of the response in the two infected states, New South Wales and Queensland. There were differences in the management of the response between the states for logistic, geographic and organisation structural reasons. Issues included the use of control centres, information centres, the problems associated with the lack of trained staff to undertake all the roles, legislative issues, controls of horse movements, the availability of resources for adequate surveillance, the challenges of communication between disparate groups and tracing the movements of both humans and horses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equine influenza (EI) outbreak presented many challenges that required high-level coordination and decision making, as well as the development of new approaches for satisfactory and consistent resolution. This paper outlines the elements of the national coordination arrangements, preparatory arrangements in place prior to the outbreak that facilitated national coordination, and some of the issues faced and resolved in the response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-Technical Summary Seafood CRC Project 2009/774. Harvest strategy evaluations and co-management for the Moreton Bay Trawl Fishery Principal Investigator: Dr Tony Courtney, Principal Fisheries Biologist Fisheries and Aquaculture, Agri-Science Queensland Department of Agriculture, Fisheries and Forestry Level B1, Ecosciences Precinct, Joe Baker St, Dutton Park, Queensland 4102 Email: tony.courtney@daff.qld.gov.au Project objectives: 1. Review the literature and data (i.e., economic, biological and logbook) relevant to the Moreton Bay trawl fishery. 2. Identify and prioritise management objectives for the Moreton Bay trawl fishery, as identified by the trawl fishers. 3. Undertake an economic analysis of Moreton Bay trawl fishery. 4. Quantify long-term changes to fishing power for the Moreton Bay trawl fishery. 5. Assess priority harvest strategies identified in 2 (above). Present results to, and discuss results with, Moreton Bay Seafood Industry Association (MBSIA), fishers and Fisheries Queensland. Note: Additional, specific objectives for 2 (above) were developed by fishers and the MBSIA after commencement of the project. These are presented in detail in section 5 (below). The project was an initiative of the MBSIA, primarily in response to falling profitability in the Moreton Bay prawn trawl fishery. The analyses were undertaken by a consortium of DAFF, CSIRO and University of Queensland researchers. This report adopted the Australian Standard Fish Names (http://www.fishnames.com.au/). Trends in catch and effort The Moreton Bay otter trawl fishery is a multispecies fishery, with the majority of the catch composed of Greasyback Prawns (Metapenaeus bennettae), Brown Tiger Prawns (Penaeus esculentus), Eastern King Prawns (Melicertus plebejus), squid (Uroteuthis spp., Sepioteuthis spp.), Banana Prawns (Fenneropenaeus merguiensis), Endeavour Prawns (Metapenaeus ensis, Metapenaeus endeavouri) and Moreton Bay bugs (Thenus parindicus). Other commercially important byproduct includes blue swimmer crabs (Portunus armatus), three-spot crabs (Portunus sanguinolentus), cuttlefish (Sepia spp.) and mantis shrimp (Oratosquilla spp.). Logbook catch and effort data show that total annual reported catch of prawns from the Moreton Bay otter trawl fishery has declined to 315 t in 2008 from a maximum of 901 t in 1990. The number of active licensed vessels participating in the fishery has also declined from 207 in 1991 to 57 in 2010. Similarly, fishing effort has fallen from a peak of 13,312 boat-days in 1999 to 3817 boat-days in 2008 – a 71% reduction. The declines in catch and effort are largely attributed to reduced profitability in the fishery due to increased operational costs and depressed prawn prices. The low prawn prices appear to be attributed to Australian aquacultured prawns and imported aquacultured vannamei prawns, displacing the markets for trawl-caught prawns, especially small species such as Greasyback Prawns which traditionally dominated landings in Moreton Bay. In recent years, the relatively high Australian dollar has resulted in reduced exports of Australian wild-caught prawns. This has increased supply on the domestic market which has also suppressed price increases. Since 2002, Brown Tiger Prawns have dominated annual reported landings in the Moreton Bay fishery. While total catch and effort in the bay have declined to historically low levels, the annual catch and catch rates of Brown Tiger Prawns have been at record highs in recent years. This appears to be at least partially attributed to the tiger prawn stock having recovered from excessive effort in previous decades. The total annual value of the Moreton Bay trawl fishery catch, including byproduct, is about $5 million, of which Brown Tiger Prawns account for about $2 million. Eastern King Prawns make up about 10% of the catch and are mainly caught in the bay from October to December as they migrate to offshore waters outside the bay where they contribute to a large mono-specific trawl fishery. Some of the Eastern King Prawns harvested in Moreton Bay may be growth overfished (i.e., caught below the size required to maximise yield or value), although the optimum size-at-capture was not determined in this study. Banana Prawns typically make up about 5% of the catch, but can exceed 20%, particularly following heavy rainfall. Economic analysis of the fishery From the economic survey, cash profits were, on average, positive for both fleet segments in both years of the survey. However, after the opportunity cost of capital and depreciation were taken into account, the residual owner-operator income was relatively low, and substantially lower than the average share of revenue paid to employed skippers. Consequently, owner-operators were earning less than their opportunity cost of their labour, suggesting that the fleets were economically unviable in the longer term. The M2 licensed fleet were, on average, earning similar boat cash profits as the T1/M1 fleet, although after the higher capital costs were accounted for the T1/M1 boats were earning substantially lower returns to owner-operator labour. The mean technical efficiency for the fleet as a whole was estimated to be 0.67. That is, on average, the boats were only catching 67 per cent of what was possible given their level of inputs (hours fished and hull units). Almost one-quarter of observations had efficiency scores above 0.8, suggesting a substantial proportion of the fleet are relatively efficient, but some are also relatively inefficient. Both fleets had similar efficiency distributions, with median technical efficiency score of 0.71 and 0.67 for the M2 and T1/M1 boats respectively. These scores are reasonably consistent with other studies of prawn trawl fleets in Australia, although higher average efficiency scores were found in the NSW prawn trawl fleet. From the inefficiency model, several factors were found to significantly influence vessel efficiency. These included the number of years of experience as skipper, the number of generations that the skipper’s family had been fishing and the number of years schooling. Skippers with more schooling were significantly more efficient than skippers with lower levels of schooling, consistent with other studies. Skippers who had been fishing longer were, in fact, less efficient than newer skippers. However, this was mitigated in the case of skippers whose family had been involved in fishing for several generations, consistent with other studies and suggesting that skill was passed through by families over successive generations. Both the linear and log-linear regression models of total fishing effort against the marginal profit per hour performed reasonably well, explaining between 70 and 84 per cent of the variation in fishing effort. As the models had different dependent variables (one logged and the other not logged) this is not a good basis for model choice. A better comparator is the square root of the mean square error (SMSE) expressed as a percentage of the mean total effort. On this criterion, both models performed very similarly. The linear model suggests that each additional dollar of average profits per hour in the fishery increases total effort by around 26 hours each month. From the log linear model, each percentage increase in profits per hour increases total fishing effort by 0.13 per cent. Both models indicate that economic performance is a key driver of fishing effort in the fishery. The effect of removing the boat-replacement policy is to increase individual vessel profitability, catch and effort, but the overall increase in catch is less than that removed by the boats that must exit the fishery. That is, the smaller fleet (in terms of boat numbers) is more profitable but the overall catch is not expected to be greater than before. This assumes, however, that active boats are removed, and that these were also taking an average level of catch. If inactive boats are removed, then catch of the remaining group as a whole could increase by between 14 and 17 per cent depending on the degree to which costs are reduced with the new boats. This is still substantially lower than historical levels of catch by the fleet. Fishing power analyses An analysis of logbook data from 1988 to 2010, and survey information on fishing gear, was performed to estimate the long-term variation in the fleet’s ability to catch prawns (known as fishing power) and to derive abundance estimates of the three most commercially important prawn species (i.e., Brown Tiger, Eastern King and Greasyback Prawns). Generalised linear models were used to explain the variation in catch as a function of effort (i.e., hours fished per day), vessel and gear characteristics, onboard technologies, population abundance and environmental factors. This analysis estimated that fishing power associated with Brown Tiger and Eastern King Prawns increased over the past 20 years by 10–30% and declined by approximately 10% for greasybacks. The density of tiger prawns was estimated to have almost tripled from around 0.5 kg per hectare in 1988 to 1.5 kg/ha in 2010. The density of Eastern King Prawns was estimated to have fluctuated between 1 and 2 kg per hectare over this time period, without any noticeable overall trend, while Greasyback Prawn densities were estimated to have fluctuated between 2 and 6 kg per hectare, also without any distinctive trend. A model of tiger prawn catches was developed to evaluate the impact of fishing on prawn survival rates in Moreton Bay. The model was fitted to logbook data using the maximum-likelihood method to provide estimates of the natural mortality rate (0.038 and 0.062 per week) and catchability (which can be defined as the proportion of the fished population that is removed by one unit of effort, in this case, estimated to be 2.5 ± 0.4 E-04 per boat-day). This approach provided a method for industry and scientists to develop together a realistic model of the dynamics of the fishery. Several aspects need to be developed further to make this model acceptable to industry. Firstly, there is considerable evidence to suggest that temperature influences prawn catchability. This ecological effect should be incorporated before developing meaningful harvest strategies. Secondly, total effort has to be allocated between each species. Such allocation of effort could be included in the model by estimating several catchability coefficients. Nevertheless, the work presented in this report is a stepping stone towards estimating essential fishery parameters and developing representative mathematical models required to evaluate harvest strategies. Developing a method that allowed an effective discussion between industry, management and scientists took longer than anticipated. As a result, harvest strategy evaluations were preliminary and only included the most valuable species in the fishery, Brown Tiger Prawns. Additional analyses and data collection, including information on catch composition from field sampling, migration rates and recruitment, would improve the modelling. Harvest strategy evaluations As the harvest strategy evaluations are preliminary, the following results should not be adopted for management purposes until more thorough evaluations are performed. The effects, of closing the fishery for one calendar month, on the annual catch and value of Brown Tiger Prawns were investigated. Each of the 12 months (i.e., January to December) was evaluated. The results were compared against historical records to determine the magnitude of gain or loss associated with the closure. Uncertainty regarding the trawl selectivity was addressed using two selectivity curves, one with a weight at 50% selection (S50%) of 7 g, based on research data, and a second with S50% of 14 g, put forward by industry. In both cases, it was concluded that any monthly closure after February would not be beneficial to the industry. The magnitude of the benefit of closing the fishery in either January or February was sensitive to which mesh selectivity curve that was assumed, with greater benefit achieved when the smaller selectivity curve (i.e., S50% = 7 g) was assumed. Using the smaller selectivity (S50% = 7 g), the expected increase in catch value was 10–20% which equates to $200,000 to $400,000 annually, while the larger selectivity curve (S50% = 14 g) suggested catch value would be improved by 5–10%, or $100,000 to $200,000. The harvest strategy evaluations showed that greater benefits, in the order of 30–60% increases in the tiger annual catch value, could have been obtained by closing the fishery early in the year when annual effort levels were high (i.e., > 10,000 boat-days). In recent years, as effort levels have declined (i.e., ~4000 boat-days annually), expected benefits from such closures are more modest. In essence, temporal closures offer greater benefit when fishing mortality rates are high. A spatial analysis of Brown Tiger Prawn catch and effort was also undertaken to obtain a better understanding of the prawn population dynamics. This indicated that, to improve profitability of the fishery, fishers could consider closing the fishery in the period from June to October, which is already a period of low profitability. This would protect the Brown Tiger Prawn spawning stock, increase catch rates of all species in the lucrative pre-Christmas period (November–December), and provide fishers with time to do vessel maintenance, arrange markets for the next season’s harvest, and, if they wish, work at other jobs. The analysis found that the instantaneous rate of total mortality (Z) for the March–June period did not vary significantly over the last two decades. As the Brown Tiger Prawn population in Moreton Bay has clearly increased over this time period, an interesting conclusion is that the instantaneous rate of natural mortality (M) must have increased, suggesting that tiger prawn natural mortality may be density-dependent at this time of year. Mortality rates of tiger prawns for June–October were found to have decreased over the last two decades, which has probably had a positive effect on spawning stocks in the October–November spawning period. Abiotic effects on the prawns The influence of air temperature, rainfall, freshwater flow, the southern oscillation index (SOI) and lunar phase on the catch rates of the four main prawn species were investigated. The analyses were based on over 200,000 daily logbook catch records over 23 years (i.e., 1988–2010). Freshwater flow was more influential than rainfall and SOI, and of the various sources of flow, the Brisbane River has the greatest volume and influence on Moreton Bay prawn catches. A number of time-lags were also considered. Flow in the preceding month prior to catch (i.e., 30 days prior, Logflow1_30) and two months prior (31–60 days prior, Logflow31_60) had strong positive effects on Banana Prawn catch rates. Average air temperature in the preceding 4-6 months (Temp121_180) also had a large positive effect on Banana Prawn catch rates. Flow in the month immediately preceding catch (Logflow1_30) had a strong positive influence on Greasyback Prawn catch rates. Air temperature in the preceding two months prior to catch (Temp1_60) had a large positive effect on Brown Tiger Prawn catch rates. No obvious or marked effects were detected for Eastern King Prawns, although interestingly, catch rates declined with increasing air temperature 4–6 months prior to catch. As most Eastern King Prawn catches in Moreton Bay occur in October to December, the results suggest catch rates decline with increasing winter temperatures. In most cases, the prawn catch rates declined with the waxing lunar phase (high luminance/full moon), and increased with the waning moon (low luminance/new moon). The SOI explains little additional variation in prawn catch rates (~ <2%), although its influence was higher for Banana Prawns. Extrapolating findings of the analyses to long-term climate change effects should be interpreted with caution. That said, the results are consistent with likely increases in abundance in the region for the two tropical species, Banana Prawns and Brown Tiger Prawns, as coastal temperatures rise. Conversely, declines in abundance could be expected for the two temperate species, Greasyback and Eastern King Prawns. Corporate management structures An examination of alternative governance systems was requested by the industry at one of the early meetings, particularly systems that may give them greater autonomy in decision making as well as help improve the marketing of their product. Consequently, a review of alternative management systems was undertaken, with a particular focus on the potential for self-management of small fisheries (small in terms of number of participants) and corporate management. The review looks at systems that have been implemented or proposed for other small fisheries internationally, with a particular focus on self-management as well as the potential benefits and challenges for corporate management. This review also highlighted particular opportunities for the Moreton Bay prawn fishery. Corporate management differs from other co-management and even self-management arrangements in that ‘ownership’ of the fishery is devolved to a company in which fishers and government are shareholders. The company manages the fishery as well as coordinates marketing to ensure that the best prices are received and that the catch taken meets the demands of the market. Coordinated harvesting will also result in increased profits, which are returned to fishers in the form of dividends. Corporate management offers many of the potential benefits of an individual quota system without formally implementing such a system. A corporate management model offers an advantage over a self-management model in that it can coordinate both marketing and management to take advantage of this unique geographical advantage. For such a system to be successful, the fishery needs to be relatively small and self- contained. Small in this sense is in terms of number of operators. The Moreton Bay prawn fishery satisfies these key conditions for a successful self-management and potentially corporate management system. The fishery is small both in terms of number of participants and geography. Unlike other fisheries that have progressed down the self-management route, the key market for the product from the Moreton Bay fishery is right at its doorstep. Corporate management also presents a number of challenges. First, it will require changes in the way fishers operate. In particular, the decision on when to fish and what to catch will be taken away from the individual and decided by the collective. Problems will develop if individuals do not join the corporation but continue to fish and market their own product separately. While this may seem an attractive option to fishers who believe they can do better independently, this is likely to be just a short- term advantage with an overall long-run cost to themselves as well as the rest of the industry. There are also a number of other areas that need further consideration, particularly in relation to the allocation of shares, including who should be allocated shares (e.g. just boat owners or also some employed skippers). Similarly, how harvesting activity is to be allocated by the corporation to the fishers. These are largely issues that cannot be answered without substantial consultation with those likely to be affected, and these groups cannot give these issues serious consideration until the point at which they are likely to become a reality. Given the current structure and complexity of the fishery, it is unlikely that such a management structure will be feasible in the short term. However, the fishery is a prime candidate for such a model, and development of such a management structure in the future should be considered as an option for the longer term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fumigation of stored grain with phosphine (PH 3) is used widely to control the lesser grain borer Rhyzopertha dominica. However, development of high level resistance to phosphine in this species threatens control. Effective resistance management relies on knowledge of the expression of resistance in relation to dosage at all life stages. Therefore, we determined the mode of inheritance of phosphine resistance and strength of the resistance phenotype at each developmental stage. We achieved this by comparing mortality and developmental delay between a strongly resistant strain (R-strain), a susceptible strain (S-strain) and their F 1 progenies. Resistance was a maternally inherited, semi-dominant trait in the egg stage but was inherited as an autosomal, incompletely recessive trait in larvae and pupae. The rank order of developmental tolerance in both the sensitive and resistant strains was eggs > pupae > larvae. Comparison of published values for the response of adult R. dominica relative to our results from immature stages reveals that the adult stage of the S-strain is more sensitive to phosphine than are larvae. This situation is reversed in the R-strain as the adult stage is much more resistant to phosphine than even the most tolerant immature stage. Phosphine resistance factors at LC 50 were eggs 400×, larvae 87× and pupae 181× with respect to reference susceptible strain (S-strain) adults indicating that tolerance conferred by a particular immature stage neither strongly nor reliably interacts with the genetic resistance element. Developmental delay relative to unfumigated control insects was observed in 93% of resistant pupae, 86% of resistant larvae and 41% of resistant eggs. Increased delay in development and the toxicity response to phosphine exposure were both incompletely recessive. We show that resistance to phosphine has pleiotropic effects and that the expression of these effects varies with genotype and throughout the life history of the insect. © 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propagation of subtropical eucalypts is often limited by low production of rooted cuttings in winter. This study tested whether changing the temperature of Corymbia citriodora and Eucalyptus dunnii stock plants from 28/23A degrees C (day/night) to 18/13A degrees C, 23/18A degrees C or 33/28A degrees C affected the production of cuttings by stock plants, the concentrations of Ca and other nutrients in cuttings, and the subsequent percentages of cuttings that formed roots. Optimal temperatures for shoot production were 33/28A degrees C and 28/23A degrees C, with lower temperatures reducing the number of harvested cuttings. Stock plant temperature regulated production of rooted cuttings, firstly by controlling shoot production and, secondly, by affecting the ensuing rooting percentage. Shoot production was the primary factor regulating rooted cutting production by C. citriodora, but both shoot production and root production were key determinants of rooted cutting production in E. dunnii. Effects of lower stock plant temperatures on rooting were not the result of reduced Ca concentration, but consistent relationships were found between adventitious root formation and B concentration. Average rooting percentages were low (1-15% for C. citriodora and 2-22% for E. dunnii) but rooted cutting production per stock plant (e.g. 25 for C. citriodora and 52 for E. dunnii over 14 weeks at 33/28A degrees C) was sufficient to establish clonal field tests for plantation forestry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tribolium castaneum (Herbst) and Rhyzopertha dominica (F.) are common cosmopolitan pests of stored grain and grain products. We evaluated the relative attraction of T.castaneum and R.dominica to wheat, sorghum and cotton seeds in the field, near grain storage facilities and well away from storages in southern and central Queensland using multiple trapping techniques. The results show that T.castaneum is more strongly attracted to linted cotton seed relative to wheat, whereas R.dominica did not respond to cotton seed at all and was attracted only to wheat. Significantly more adults of T.castaneum (10-15 times) were attracted to traps placed on the ground, near grain storage, than to equivalent traps that were suspended (1.5m above the ground) nearby. These results suggest that Tribolium beetles detect and respond to resources towards the end of their dispersal flight, after which they localize resources while walking. By contrast R.dominica was captured only in suspended traps, which suggests they fly directly onto resources as they localize them. The ability of both species to colonize and reproduce in isolated resource patches within the relatively short time of 1month is illustrated by the returns from the traps deployed in the field (at least 1km from the nearest stored grain) even though they caught only a few beetles. The results presented here provide novel insights about the resource location behaviours of both T.castaneum and R.dominica. In particular, the relationship of T.castaneum with non-cereal resources that are not conventionally associated with this species suggests an emphasis on these other resources in investigating the resource location behaviour of these beetles. This new perspective on the ecology of T. castaneum highlights the potential role of non-cereal resources (such as the lint on cotton seed) in the spread of grain pest infestations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than 1200 wheat and 120 barley experiments conducted in Australia to examine yield responses to applied nitrogen (N) fertiliser are contained in a national database of field crops nutrient research (BFDC National Database). The yield responses are accompanied by various pre-plant soil test data to quantify plant-available N and other indicators of soil fertility status or mineralisable N. A web application (BFDC Interrogator), developed to access the database, enables construction of calibrations between relative crop yield ((Y0/Ymax) × 100) and N soil test value. In this paper we report the critical soil test values for 90% RY (CV90) and the associated critical ranges (CR90, defined as the 70% confidence interval around that CV90) derived from analysis of various subsets of these winter cereal experiments. Experimental programs were conducted throughout Australia’s main grain-production regions in different eras, starting from the 1960s in Queensland through to Victoria during 2000s. Improved management practices adopted during the period were reflected in increasing potential yields with research era, increasing from an average Ymax of 2.2 t/ha in Queensland in the 1960s and 1970s, to 3.4 t/ha in South Australia (SA) in the 1980s, to 4.3 t/ha in New South Wales (NSW) in the 1990s, and 4.2 t/ha in Victoria in the 2000s. Various sampling depths (0.1–1.2 m) and methods of quantifying available N (nitrate-N or mineral-N) from pre-planting soil samples were used and provided useful guides to the need for supplementary N. The most regionally consistent relationships were established using nitrate-N (kg/ha) in the top 0.6 m of the soil profile, with regional and seasonal variation in CV90 largely accounted for through impacts on experimental Ymax. The CV90 for nitrate-N within the top 0.6 m of the soil profile for wheat crops increased from 36 to 110 kg nitrate-N/ha as Ymax increased over the range 1 to >5 t/ha. Apparent variation in CV90 with seasonal moisture availability was entirely consistent with impacts on experimental Ymax. Further analyses of wheat trials with available grain protein (~45% of all experiments) established that grain yield and not grain N content was the major driver of crop N demand and CV90. Subsets of data explored the impact of crop management practices such as crop rotation or fallow length on both pre-planting profile mineral-N and CV90. Analyses showed that while management practices influenced profile mineral-N at planting and the likelihood and size of yield response to applied N fertiliser, they had no significant impact on CV90. A level of risk is involved with the use of pre-plant testing to determine the need for supplementary N application in all Australian dryland systems. In southern and western regions, where crop performance is based almost entirely on in-crop rainfall, this risk is offset by the management opportunity to split N applications during crop growth in response to changing crop yield potential. In northern cropping systems, where stored soil moisture at sowing is indicative of minimum yield potential, erratic winter rainfall increases uncertainty about actual yield potential as well as reducing the opportunity for effective in-season applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil testing is the most widely used tool to predict the need for fertiliser phosphorus (P) application to crops. This study examined factors affecting critical soil P concentrations and confidence intervals for wheat and barley grown in Australian soils by interrogating validated data from 1777 wheat and 150 barley field treatment series now held in the BFDC National Database. To narrow confidence intervals associated with estimated critical P concentrations, filters for yield, crop stress, or low pH were applied. Once treatment series with low yield (<1 t/ha), severe crop stress, or pHCaCl2 <4.3 were screened out, critical concentrations were relatively insensitive to wheat yield (>1 t/ha). There was a clear increase in critical P concentration from early trials when full tillage was common compared with those conducted in 1995–2011, which corresponds to a period of rapid shift towards adoption of minimum tillage. For wheat, critical Colwell-P concentrations associated with 90 or 95% of maximum yield varied among Australian Soil Classification (ASC) Orders and Sub-orders: Calcarosol, Chromosol, Kandosol, Sodosol, Tenosol and Vertosol. Soil type, based on ASC Orders and Sub-orders, produced critical Colwell-P concentrations at 90% of maximum relative yield from 15 mg/kg (Grey Vertosol) to 47 mg/kg (Supracalcic Calcarosols), with other soils having values in the range 19–27 mg/kg. Distinctive differences in critical P concentrations were evident among Sub-orders of Calcarosols, Chromosols, Sodosols, Tenosols, and Vertosols, possibly due to differences in soil properties related to P sorption. However, insufficient data were available to develop a relationship between P buffering index (PBI) and critical P concentration. In general, there was no evidence that critical concentrations for barley would be different from those for wheat on the same soils. Significant knowledge gaps to fill to improve the relevance and reliability of soil P testing for winter cereals were: lack of data for oats; the paucity of treatment series reflecting current cropping practices, especially minimum tillage; and inadequate metadata on soil texture, pH, growing season rainfall, gravel content, and PBI. The critical concentrations determined illustrate the importance of recent experimental data and of soil type, but also provide examples of interrogation pathways into the BFDC National Database to extract locally relevant critical P concentrations for guiding P fertiliser decision-making in wheat and barley.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent report to the Australian Government identified concerns relating to Australia's capacity to respond to a medium to large outbreak of FMD. To assess the resources required, the AusSpread disease simulation model was used to develop a plausible outbreak scenario that included 62 infected premises in five different states at the time of detection, 28 days after the disease entered the first property in Victoria. Movements of infected animals and/or contaminated product/equipment led to smaller outbreaks in NSW, Queensland, South Australia and Tasmania. With unlimited staff resources, the outbreak was eradicated in 63 days with 54 infected premises and a 98% chance of eradication within 3 months. This unconstrained response was estimated to involve 2724 personnel. Unlimited personnel was considered unrealistic, and therefore, the course of the outbreak was modelled using three levels of staffing and the probability of achieving eradication within 3 or 6 months of introduction determined. Under the baseline staffing level, there was only a 16% probability that the outbreak would be eradicated within 3 months, and a 60% probability of eradication in 6 months. Deployment of an additional 60 personnel in the first 3 weeks of the response increased the likelihood of eradication in 3 months to 68%, and 100% in 6 months. Deployment of further personnel incrementally increased the likelihood of timely eradication and decreased the duration and size of the outbreak. Targeted use of vaccination in high-risk areas coupled with the baseline personnel resources increased the probability of eradication in 3 months to 74% and to 100% in 6 months. This required 25 vaccination teams commencing 12 days into the control program increasing to 50 vaccination teams 3 weeks later. Deploying an equal number of additional personnel to surveillance and infected premises operations was equally effective in reducing the outbreak size and duration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significantly increased water regime can lead to inundation of rivers, creeks and surrounding floodplains- and thus impact on the temporal dynamics of both the extant vegetation and the dormant, but viable soil-seed bank of riparian corridors. The study documented changes in the soil seed-bank along riparian corridors before and after a major flood event in January 2011 in southeast Queensland, Australia. The study site was a major river (the Mooleyember creek) near Roma, Central Queensland impacted by the extreme flood event and where baseline ecological data on riparian seed-bank populations have previously been collected in 2007, 2008 and 2009. After the major flood event, we collected further soil samples from the same locations in spring/summer (November–December 2011) and in early autumn (March 2012). Thereafter, the soils were exposed to adequate warmth and moisture under glasshouse conditions, and emerged seedlings identified taxonomically. Flooding increased seed-bank abundance but decreased its species richness and diversity. However, flood impact was less than that of yearly effect but greater than that of seasonal variation. Seeds of trees and shrubs were few in the soil, and were negatively affected by the flood; those of herbaceous and graminoids were numerous and proliferate after the flood. Seed-banks of weedy and/or exotic species were no more affected by the flood than those of native and/or non-invasive species. Overall, the studied riparian zone showed evidence of a quick recovery of its seed-bank over time, and can be considered to be resilient to an extreme flood event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cat’s claw creeper vine, Dolichandra unguis-cati (L.) L.G.Lohmann (formerly known as Macfadyena unguis-cati (L.) A.H.Gentry), a Weed of National Significance (WoNS), is a structural woody parasite that is highly invasive along sensitive riparian corridors and native forests of coastal and inland eastern Australia. As part of evaluation of the impact of herbicide and mechanical/physical control techniques on the long-term reduction of biomass of the weed and expected return of native flora, we have set-up permanent vegetation plots in: (a) infested and now chemically/physically treated, (b) infested but untreated and (c) un-infested patches. The treatments were set up in both riparian and non-riparian habitats to document changes that occur in seed bank flora over a two-year post-treatment period. Response to treatment varied spatially and temporally. However, following chemical and physical removal treatments, treated patches exhibited lower seed bank abundance and diversity than infested and patches lacking the weed, but differences were not statistically significant. Thus it will be safe to say that spraying herbicides using the recommended rate does not undermine restoration efforts.