40 resultados para Polyphosphate-accumulating Organisms
Resumo:
In recent years, dieback of durian has become a major problem in mature orchards in the northern Queensland wet tropics region. A survey of 13 durian orchards was conducted during the dry season (July-September 2001) and following wet season (February-April 2002), with roots and soil from the root zone of affected trees being sampled. Phytophthora palmivora was recovered from the roots of affected trees on 12 of the 13 farms in the dry season, and all farms in the wet season. Pythium vexans was recovered from all 13 farms in both seasons. P. palmivora and P. vexans were recovered from diseased roots of 3-month-old durian seedlings cv. Monthong artificially inoculated with these organisms.
Resumo:
Near infrared (NIR) spectroscopy, usually in reflectance mode, has been applied to the analysis of faeces to measure the concentrations of constituents such as total N, fibre, tannins and delta C-13. In addition, an unusual and exciting application of faecal NIR [F.NIR] analyses is to directly predict attributes of the diet of herbivores such as crude protein and fibre contents, proportions of plant species and morphological components, diet digestibility and voluntary DM intake. This is an unusual application of NIR spectroscopy insofar as the spectral measurements are made, not on the material of interest [i.e. the diet), but on a derived material (i.e. faeces). Predictions of diet attributes from faecal spectra clearly depend on there being sufficient NIR spectral information in the diet residues present in faeces to describe the diet, although endogenous components of faeces such as undigested debris of micro-organisms from the rumen and Large intestine and secretions into the gastrointestinal tract wilt also contribute spectral information. Spectra of forage and of faeces derived from the forage are generally similar and the observed differences are principally in the spectral regions associated with constituents of forages known to be of low, or of high, digestibility. Some diet components (for example, ureal which are likely to be entirely digested apparently cannot be predicted from faecal NIR spectra because they cannot contribute to faecal spectra except through modifying the microbial and endogenous components. The errors and robustness of F.NIR calibrations to predict the crude protein concentration and digestibility of the diet of herbivores are generally comparable with those to directly predict the same attributes in forage from NIR spectra of the forage. Some attributes of the animal, such as species, gender, pregnancy status and parasite burden have been successfully discriminated into classes based on their faecal NIR spectra. Such discrimination was likely associated with differences in the diet selected and/or differences in the metabolites excreted in the faeces. NIR spectroscopy of faeces has usually involved scanning dried and ground samples in monochromators in the 400-2500nm or 1100-2500nm ranges. Results satisfactory for the purpose have also been reported for dried and ground faeces scanned using a diode array instrument in the 800-1700nm range and for wet faeces and slurries of excreta scanned with monochromators. Chemometric analysis of faecal spectra has generally used the approaches established for forage analysis. The capacity to predict many attributes of the diet, and some aspects of animal physiology, from NIR spectra of faeces is particularly useful to study the quality and quantity of the diet selected by both domestic and feral grazing herbivores and to enhance production and management of both herbivores and their grazing environment.
Resumo:
Sago starch is an important dietary carbohydrate in lowland Papua New Guinea (PNG). An investigation was conducted to determine whether microbes play a role in its preservation using traditional methods. In 12 stored sago samples collected from PNG villages, lactic acid bacteria (LAB) were present (>= 3.6 x 10(4) cfu/g) and pH ranged from 6.8 to 4.2. Acetic and propionic acids were detected in all samples, while butyric, lactic and valeric acids were present in six or more. In freshly prepared sago, held in sealed containers in the laboratory at 30 degrees C, spontaneous fermentation by endogenous microflora of sago starch was observed. This was evident by increasing concentrations of acetic, butyric and lactic acids over 4 weeks, and pH reducing from 4.9 to 3.1: both LAB and yeasts were involved. Survival of potential bacterial pathogens was monitored by seeding sago starch with similar to 10(4)/g of selected organisms. Numbers of Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus fell to <30/g within 7 days. Salmonella sp. was present only in low numbers after 7 days (<36/g), but Escherichia coli was still detectable after three weeks (>10(2)/g). Fermentation appeared to increase the storability and safety of the product.
Resumo:
Avian haemophili demonstrating in vitro satellitic growth, also referred to as the V-factor or NAD requirement, have mainly been classified with Avibacterium paragallinarum (Haemophilus paragallinarum), Avibacterium avium (Pasteurella avium), Avibacterium volantium (Pasteurella volantium) and Avibacterium sp. A (Pasteurella species A). The aim of the present study was to assess the taxonomic position of 18 V-factor-requiring isolates of unclassified Haemophilus-like organisms isolated from galliforme, anseriforme, columbiforme and gruiforme birds as well as kestrels and psittacine birds including budgerigars by conventional phenotypic tests and 16S rRNA gene sequencing. All isolates shared phenotypical characteristics which allowed classification with Pasteurellaceae. Haemolysis of bovine red blood cells was negative. Haemin (X-factor) was not required for growth. Maximum-likelihood phylogenetic analysis including bootstrap analysis showed that six isolates were related to the avian 16S rRNA group and were classified as Avibacterium according to 16S rRNA sequence analysis. Surprisingly, the other 12 isolates were unrelated to Avibacterium. Two isolates were unrelated to any of the known 16S rRNA groups of Pasteurellaceae. Two isolates were related to Volucribacter of the avian 16S rRNA group. Seven isolates belonged to the Testudinis 16S rRNA group and out of these, two isolates were closely related to taxa 14 and 32 of Bisgaard, whereas four other isolates were found to form a genus-like group distantly related to taxon 40 and one isolated remained distantly related to other members of the Testudinis group. One isolate was closely related to taxon 26 (a member of Actinobacillus sensu stricto). The study documented major genetic diversity among V-factor-requiring avian isolates beyond the traditional interpretation that they only belong to Avibacterium, underlining the limited value of satellitic growth for identification of avian members of Pasteurellaceae. Our study also emphasized that these organisms will never be isolated without the use of special media satisfying the V-factor requirement.
Resumo:
Effective study in the native range to identify potential agents underpins all efforts in classical biological control of weeds. Good agents that demonstrate both a high degree of host specificity and the potential to be damaging are a very limited resource and must therefore be carefully studied and considered. The overseas component is often operationally difficult and expensive but can contribute considerably more than a list of herbivores attacking a particular target. While the principles underlying this foreign component have been understood for some time, recently developed technologies and methods can make very significant contributions to foreign studies. Molecular and genetic characterisations of both target weed and agent organism can be increasingly employed to more accurately define the identity and phylogeny of them. Climate matching and modelling software is now available and can be utilised to better select agents for particular regions of concern. Relational databases can store collection information for analysis and future enquiry while quantification of sampling effort, employment of statistical survey methods and analysis by techniques such as rarefaction curves contribute to efficient and effective searching. Obtaining good and timely identifications for discovered agent organisms is perhaps the most serious issue confronting the modern explorer. The diminishing numbers of specialist taxonomists employed at the major museums while international and national protocols demand higher standards of identity exacerbates the issue. Genetic barcoding may provide a very useful tool to overcome this problem. Native-range work also offers under-exploited opportunities for contributing towards predicting safety, abundance and efficacy of potential agents in their target environment.
Resumo:
1. Many organisms inhabit strongly fluctuating environments but their demography and population dynamics are often analysed using deterministic models and elasticity analysis, where elasticity is defined as the proportional change in population growth rate caused by a proportional change in a vital rate. Deterministic analyses may not necessarily be informative because large variation in a vital rate with a small deterministic elasticity may affect the population growth rate more than a small change in a less variable vital rate having high deterministic elasticity. 2. We analyse a stochastic environment model of the red kangaroo (Macropus rufus), a species inhabiting an environment characterized by unpredictable and highly variable rainfall, and calculate the elasticity of the stochastic growth rate with respect to the mean and variability in vital rates. 3. Juvenile survival is the most variable vital rate but a proportional change in the mean adult survival rate has a much stronger effect on the stochastic growth rate. 4. Even if changes in average rainfall have a larger impact on population growth rate, increased variability in rainfall may still be important also in long-lived species. The elasticity with respect to the standard deviation of rainfall is comparable to the mean elasticities of all vital rates but the survival in age class 3 because increased variation in rainfall affects both the mean and variability of vital rates. 5. Red kangaroos are harvested and, under the current rainfall pattern, an annual harvest fraction of c. 20% would yield a stochastic growth rate about unity. However, if average rainfall drops by more than c. 10%, any level of harvesting may be unsustainable, emphasizing the need for integrating climate change predictions in population management and increase our understanding of how environmental stochasticity translates into population growth rate.
Resumo:
In Australia, disease caused by betanodavirus has been reported in an increasing number of cultured finfish since the first report of mortalities in 1990. Partial coat protein gene sequences from the T2 or T4 regions of 8 betanodaviruses from barramundi Lates calcarifer, sleepy cod Oxyeleotris lineolata, striped trumpeter Latris lineata, barramundi cod Cromileptes altivelis, Australian bass Macquaria novemaculata and gold-spotted rockcod Epinephelus coioides from several Australian states were determined. Analysis of the 606 bp nucleotide sequences of the T2 region of 4 isolates demonstrated the close relationship with isolates from the red-spotted grouper nervous necrosis virus (RGNNV) genotype and the Cluster Ia subtype. Comparison of a smaller 289 bp sequence from the T4 region identified 2 distinct groupings of the Australian isolates within the RGNNV genotype. Isolates from barramundi from the Northern Territory, barramundi, sleepy cod, barramundi cod and gold-spotted rockcod from Queensland, and striped trumpeter from Tasmania shared a 96.2 to 99.7%, nucleotide identity with each other. These isolates were most similar to the RGNNV genotype Cluster Ia. Isolates from Australian bass from New South Wales and from barramundi from South Australia shared a 98.6% sequence identity with each other. However, these isolates only shared an 85.8 to 87.9%, identity with the other Australian isolates and representative RGNNV isolates. The closest nucleotide identity to sequences reported in the literature for the New South Wales and South Australian isolates was to an Australian barramundi isolate (Ba94Aus) from 1994. These 2 Australian isolates formed a new subtype within the RGNNV genotype, which is designated as Cluster Ic.
Resumo:
This study assessed the levels of two key pathogens, Salmonella and Campylobacter, along with the indicator organism Escherichia coli in aerosols within and outside poultry sheds. The study ranged over a 3-year period on four poultry farms and consisted of six trials across the boiler production cycle of around 55 days. Weekly testing of litter and aerosols was carried out through the cycle. A key point that emerged is that the levels of airborne bacteria are linked to the levels of these bacteria in litter. This hypothesis was demonstrated by E. coli. The typical levels of E. coli in litter were similar to 10(8) CFU g(-1) and, as a consequence, were in the range of 10(2) to 10(4) CFU m(-3) in aerosols, both inside and outside the shed. The external levels were always lower than the internal levels. Salmonella was only present intermittently in litter and at lower levels (10(3) to 10(5) most probable number [MPN] g(-1)) and consequently present only intermittently and at low levels in air inside (range of 0.65 to 4.4 MPN m(-3)) and once outside (2.3 MPN m(-3)). The Salmonella serovars isolated in litter were generally also isolated from aerosols and dust, with the Salmonella serovars Chester and Sofia being the dominant serovars across these interfaces. Campylobacter was detected late in the production cycle, in litter at levels of around 107 MPN g(-1). Campylobacter was detected only once inside the shed and then at low levels of 2.2 MPN m(-3). Thus, the public health risk from these organisms in poultry environments via the aerosol pathway is minimal.
Resumo:
1. Litter samples were collected at the end of the production cycle from spread litter in a single shed from each of 28 farms distributed across the three Eastern seaboard States of Australia. 2. The geometric mean for Salmonella was 44 Most Probable Number (MPN)/g for the 20 positive samples. Five samples were between 100 and 1000 MPN/g and one at 105 MPN/g, indicating a range of factors are contributing to these varying loads of this organism in litter. 3. The geometric mean for Campylobacter was 30 MPN/g for the 10 positive samples, with 7 of these samples being 100 MPN/g. The low prevalence and incidence of Campylobacter were possibly due to the rapid die-off of this organism. 4. E. coli values were markedly higher than the two key pathogens (geometric mean 20 x 105 colony forming units (cfu)/g) with overall values being more or less within the same range across all samples in the trial, suggesting a uniform contribution pattern of these organisms in litter. 5. Listeria monocytogenes was absent in all samples and this organism appears not to be an issue in litter. 6. The dominant (70% of the isolates) Salmonella serovar was S. Sofia (a common serovar isolated from chickens in Australia) and was isolated across all regions. Other major serovars were S. Virchow and S. Chester (at 10%) and S. Bovismorbificans and S. Infantis (at 8%) with these serovars demonstrating a spatial distribution across the major regions tested. 7. There is potential to re-use litter in the environment depending on end use and the support of relevant application practices and guidelines.
Resumo:
Herbicide contamination from agriculture is a major issue worldwide, and has been identified as a threat to freshwater and marine environments in the Great Barrier Reef World Heritage Area in Australia. The triazine herbicides are of particular concern because of potential adverse effects, both on photosynthetic organisms and upon vertebrate development. To date a number of bioremediation strategies have been proposed for triazine herbicides, but are unlikely to be implemented due to their reliance upon the release of genetically modified organisms. We propose an alternative strategy using a free-enzyme bioremediant, which is unconstrained by the issues surrounding the use of live organisms. Here we report an initial field trial with an enzyme-based product, demonstrating that the technology is technically capable of remediating water bodies contaminated with the most common triazine herbicide, atrazine.
Resumo:
This book is a resource for those involved ‘on-the-ground’ with growing plantation trees in Vietnam, identifying the pests and diseases found on them, and managing the impacts of these organisms. The book, supported by AusAID’s Vietnam CARD (Cooperation for Agricultural and Rural Development) Program, and draws on the collective, long-standing experience of forest health scientists in Vietnam, Australia and South Africa. The book provides illustrations and information on 23 pests and 25 diseases of Acacia, Eucalyptus and Pinus for Vietnam; four of these species are important biosecurity threats not yet present in Vietnam.
Resumo:
There are many potential bioremediation approaches that may be suitable for prawn farms in Queensland. Although most share generally accepted bioremediation principles, advocacy for different methods tends to vary widely. This diversity of approach is particularly driven by the availability and knowledge of functional species at different localities around the world. In Australia, little is known about the abilities of many native species in this regard, and translocation and biosecurity issues prevent the use of exotic species that have shown potential in other countries. Species selected must be tolerant of eutrophic conditions and ecological shifts, because prawn pond nutrient levels and pathways can vary with different assemblages of autotrophic and heterotrophic organisms. Generally, they would be included in a constructed ecosystem because of their functional contributions to nutrient cycling and uptake, and to create nutrient sinks in forms of harvestable biomass. Wide salinity, temperature and water quality tolerances are also valuable attributes for selected species due to the sometimes-pronounced effects of environmental extremes, and to provide over-wintering options and adequate safety margins in avoiding mass mortalities. To practically achieve these bioremediation polycultures on a large scale, and in concert with the operations of a prawn farm, methods involving seed production, stock management, and a range of other farm engineering and product handling systems need to be reliably achievable and economically viable. Research funding provided by the Queensland Government through the Aquaculture Industry Development Initiative (AIDI) 2002-04 has enabled a number of technical studies into biological systems to treat prawn farm effluent for recirculation and improved environmental sustainability. AIDI bioremediation research in southern Queensland was based at the Bribie Island Aquaculture Research Centre (BIARC), and was conducted in conjunction with AIDI genetics and selection research, and a Natural Heritage Trust (NHT) funded program (Coast and Clean Seas Project No.717757). This report compilation provides a summary of some of the work conducted within these programs.
Resumo:
Respiratory bacterial pathogens in pigs are currently treated with antibiotics. Intervet - Schering Plough markets an antibiotic called Nurflor (Florfenicol) targeting respiratory pathogens. This project tests the effectiveness of this antibiotic against a series of respiratory pathogens. 6 isolates will be tested per serovar/strain and the isolates will be from 4 different farms using MIC testing. The sensitivity of Florfenicol will be compared to sensitivity of the organisms to Tilmicosin and Amoxicillin. Development of resistance to certain antibiotics have been reported, so it is important to have alternative antibiotics available to treat the respiratory pathogens on farms.
Resumo:
Develops a new technology for the delivery of biocides against agricultural pests, with biocides contained within silica nanocapsules which are themselves protected by an outer envelope, capable of being selectively broken down by the target pest. Will reduce the amount of biocide escaping into the environment, prolong the life of the biocide, reduce biocide usage rates, and reduce undesirable effects on non-target organisms.
Resumo:
Root-lesion nematodes (RLNs) are found on 75% of grain farms in southern Queensland (QLD) and northern New South Wales (NSW) and are significant pests. This project confirmed that biological suppression of RLNs occurs in soils, examined what organisms are involved and how growers might enhance suppressiveness of soils. Field trials, and glasshouse and laboratory bioassays of soils from fields with contrasting management practices, showed suppressiveness is favoured with less tillage, more stubble and continuous intensive cropping, particularly in the top 15cm of soil. Through extensive surveys key organisms, Pasteuria bacteria, nematode-trapping fungi and predatory nematodes were isolated and identified as being present.