28 resultados para Partial least squares
Resumo:
Identification of major contributors to odour annoyance in areas with multiple emission sources is necessary to address and resolve odour disputes. In an effort to develop an appropriate tool for this task, odour samples were collected on-site at a piggery and an abattoir (the major odour sources in the area) and at surrounding off-site areas, then analysed using a commercial non-specific chemical sensor array to develop an odour fingerprint database. The developed odour fingerprint database was analysed using two pattern recognition algorithms including a partial least squares-discriminant analysis (PLS-DA) and a Kohonen self-organising map (KSOM). The KSOM model could identify odour samples sourced from the piggery shed 15, piggery pond 8, piggery pond 9, abattoir, motel and others with mean percentage values of 77.5, 65.0, 90.2, 75.7, 44.8 and 64.6%, respectively.
Resumo:
Partial least squares regression models on NIR spectra are often optimised (for wavelength range, mathematical pretreatment and outlier elimination) in terms of calibration terms of validation performance with reference to totally independent populations.
Resumo:
A commercial non-specific gas sensor array system was evaluated in terms of its capability to monitor the odour abatement performance of a biofiltration system developed for treating emissions from a commercial piggery building. The biofiltration system was a modular system comprising an inlet ducting system, humidifier and closed-bed biofilter. It also included a gravimetric moisture monitoring and water application system for precise control of moisture content of an organic woodchip medium. Principal component analysis (PCA) of the sensor array measurements indicated that the biofilter outlet air was significantly different to both inlet air of the system and post-humidifier air. Data pre-processing techniques including normalising and outlier handling were applied to improve the odour discrimination performance of the non-specific gas sensor array. To develop an odour quantification model using the sensor array responses of the non-specific sensor array, PCA regression, artificial neural network (ANN) and partial least squares (PLS) modelling techniques were applied. The correlation coefficient (r(2)) values of the PCA, ANN, and PLS models were 0.44, 0.62 and 0.79, respectively.
Resumo:
The use of near infrared (NIR) hyperspectral imaging and hyperspectral image analysis for distinguishing between hard, intermediate and soft maize kernels from inbred lines was evaluated. NIR hyperspectral images of two sets (12 and 24 kernels) of whole maize kernels were acquired using a Spectral Dimensions MatrixNIR camera with a spectral range of 960-1662 nm and a sisuChema SWIR (short wave infrared) hyperspectral pushbroom imaging system with a spectral range of 1000-2498 nm. Exploratory principal component analysis (PCA) was used on absorbance images to remove background, bad pixels and shading. On the cleaned images. PCA could be used effectively to find histological classes including glassy (hard) and floury (soft) endosperm. PCA illustrated a distinct difference between glassy and floury endosperm along principal component (PC) three on the MatrixNIR and PC two on the sisuChema with two distinguishable clusters. Subsequently partial least squares discriminant analysis (PLS-DA) was applied to build a classification model. The PLS-DA model from the MatrixNIR image (12 kernels) resulted in root mean square error of prediction (RMSEP) value of 0.18. This was repeated on the MatrixNIR image of the 24 kernels which resulted in RMSEP of 0.18. The sisuChema image yielded RMSEP value of 0.29. The reproducible results obtained with the different data sets indicate that the method proposed in this paper has a real potential for future classification uses.
Resumo:
BACKGROUND: The inability to consistently guarantee internal quality of horticulture produce is of major importance to the primary producer, marketers and ultimately the consumer. Currently, commercial avocado maturity estimation is based on the destructive assessment of percentage dry matter (%DM), and sometimes percentage oil, both of which are highly correlated with maturity. In this study the utility of Fourier transform (FT) near-infrared spectroscopy (NIRS) was investigated for the first time as a non-invasive technique for estimating %DM of whole intact 'Hass' avocado fruit. Partial least squares regression models were developed from the diffuse reflectance spectra to predict %DM, taking into account effects of intra-seasonal variation and orchard conditions. RESULTS: It was found that combining three harvests (early, mid and late) from a single farm in the major production district of central Queensland yielded a predictive model for %DM with a coefficient of determination for the validation set of 0.76 and a root mean square error of prediction of 1.53% for DM in the range 19.4-34.2%. CONCLUSION: The results of the study indicate the potential of FT-NIRS in diffuse reflectance mode to non-invasively predict %DM of whole 'Hass' avocado fruit. When the FT-NIRS system was assessed on whole avocados, the results compared favourably against data from other NIRS systems identified in the literature that have been used in research applications on avocados.
Resumo:
Fourier Transform (FT)-near infra-red spectroscopy (NIRS) was investigated as a non-invasive technique for estimating percentage (%) dry matter of whole intact 'Hass' avocado fruit. Partial least squares (PLS) calibration models were developed from the diffuse reflectance spectra to predict % dry matter, taking into account effects of seasonal variation. It is found that seasonal variability has a significant effect on model predictive performance for dry matter in avocados. The robustness of the calibration model, which in general limits the application for the technique, was found to increase across years (seasons) when more seasonal variability was included in the calibration set. The R-v(2) and RMSEP for the single season prediction models predicting on an independent season ranged from 0.09 to 0.61 and 2.63 to 5.00, respectively, while for the two season models predicting on the third independent season, they ranged from 0.34 to 0.79 and 2.18 to 2.50, respectively. The bias for single season models predicting an independent season was as high as 4.429 but <= 1.417 for the two season combined models. The calibration model encompassing fruit from three consecutive years yielded predictive statistics of R-v(2) = 0.89, RMSEP = 1.43% dry matter with a bias of -0.021 in the range 16.1-39.7% dry matter for the validation population encompassing independent fruit from the three consecutive years. Relevant spectral information for all calibration models was obtained primarily from oil, carbohydrate and water absorbance bands clustered in the 890-980, 1005-1050, 1330-1380 and 1700-1790 nm regions. These results indicate the potential of FT-NIRS, in diffuse reflectance mode, to non-invasively predict the % dry matter of whole 'Hass' avocado fruit and the importance of the development of a calibration model that incorporates seasonal variation. Crown Copyright (c) 2012 Published by Elsevier B.V. All rights reserved.
Resumo:
The study examined the potential of Near Infrared Reflectance (NIR) spectroscopy for field diagnosis of hybrids between Corymbia (formerly Eucalyptus) species. NIR profiles were generated by scanning foliage from a total of 383 hybrid and 533 parental seedlings grown in a common garden and partial least squares discriminant analysis was used to test three-way model power to assign individuals to their appropriate taxon; either a parental or F1 hybrid class. Using the optimised conditions, fresh foliage from eight-month-old seedlings and a handheld NIR instrument (950–1800 nm), the mean assignment rates for the three hybrid groups ranged from 76% to 90%. Hybrid-parent contrast of NIR spectra deviated more so than parent–parent contrast. The F1 taxon assignment rates were usually higher than those for parents at 100% and 72%, respectively. Hybrid resolution was even greater for 2nd generation backcross hybrids. Similar to studies of morphology, taxon assignments tended to be more accurate for hybrid groups in which the parental taxa were more divergent. The practical application of this technique for hybrid diagnosis of seedlings in the nursery will require careful attention to control environmental factors because seedling age and storage effects influenced the ability of NIR to identify hybrids. The technique may also necessitate the generation of comparable reference populations, although exclusions approaches to analysis may circumvent the need for reference populations. The application of NIR in field diagnosis will be further complicated by the need to generate global models across environments but such models have been obtained for reliable prediction of chemistries in other situations.
Resumo:
Hydrogen cyanide (HCN) is a toxic chemical that can potentially cause mild to severe reactions in animals when grazing forage sorghum. Developing technologies to monitor the level of HCN in the growing crop would benefit graziers, so that they can move cattle into paddocks with acceptable levels of HCN. In this study, we developed near-infrared spectroscopy (MRS) calibrations to estimate HCN in forage sorghum and hay. The full spectral NIRS range (400-2498 nm) was used as well as specific spectral ranges within the full spectral range, i.e., visible (400-750 nm), shortwave (800-1100 nm) and near-infrared (NIR) (1100-2498 nm). Using the full spectrum approach and partial least-squares (PLS), the calibration produced a coefficient of determination (R-2) = 0.838 and standard error of cross-validation (SECV) = 0.040%, while the validation set had a R-2 = 0.824 with a low standard error of prediction (SEP = 0.047%). When using a multiple linear regression (MLR) approach, the best model (NIR spectra) produced a R-2 = 0.847 and standard error of calibration (SEC) = 0.050% and a R-2 = 0.829 and SEP = 0.057% for the validation set. The MLR models built from these spectral regions all used nine wavelengths. Two specific wavelengths 2034 and 2458 nm were of interest, with the former associated with C=O carbonyl stretch and the latter associated with C-N-C stretching. The most accurate PLS and MLR models produced a ratio of standard error of prediction to standard deviation of 3.4 and 3.0, respectively, suggesting that the calibrations could be used for screening breeding material. The results indicated that it should be feasible to develop calibrations using PLS or MLR models for a number of users, including breeding programs to screen for genotypes with low HCN, as well as graziers to monitor crop status to help with grazing efficiency.
Resumo:
BACKGROUND: In order to rapidly and efficiently screen potential biofuel feedstock candidates for quintessential traits, robust high-throughput analytical techniques must be developed and honed. The traditional methods of measuring lignin syringyl/guaiacyl (S/G) ratio can be laborious, involve hazardous reagents, and/or be destructive. Vibrational spectroscopy can furnish high-throughput instrumentation without the limitations of the traditional techniques. Spectral data from mid-infrared, near-infrared, and Raman spectroscopies was combined with S/G ratios, obtained using pyrolysis molecular beam mass spectrometry, from 245 different eucalypt and Acacia trees across 17 species. Iterations of spectral processing allowed the assembly of robust predictive models using partial least squares (PLS). RESULTS: The PLS models were rigorously evaluated using three different randomly generated calibration and validation sets for each spectral processing approach. Root mean standard errors of prediction for validation sets were lowest for models comprised of Raman (0.13 to 0.16) and mid-infrared (0.13 to 0.15) spectral data, while near-infrared spectroscopy led to more erroneous predictions (0.18 to 0.21). Correlation coefficients (r) for the validation sets followed a similar pattern: Raman (0.89 to 0.91), mid-infrared (0.87 to 0.91), and near-infrared (0.79 to 0.82). These statistics signify that Raman and mid-infrared spectroscopy led to the most accurate predictions of S/G ratio in a diverse consortium of feedstocks. CONCLUSION: Eucalypts present an attractive option for biofuel and biochemical production. Given the assortment of over 900 different species of Eucalyptus and Corymbia, in addition to various species of Acacia, it is necessary to isolate those possessing ideal biofuel traits. This research has demonstrated the validity of vibrational spectroscopy to efficiently partition different potential biofuel feedstocks according to lignin S/G ratio, significantly reducing experiment and analysis time and expense while providing non-destructive, accurate, global, predictive models encompassing a diverse array of feedstocks.
Resumo:
Methylglyoxal (2-oxopropanal) is a compound known to contribute to the non-peroxide antimicrobial activity of honeys. The feasibility of using infrared spectroscopy as a predictive tool for honey antibacterial activity and methylglyoxal content was assessed. A linear relationship was found between methylglyoxal content (279–1755 mg/kg) in Leptospermum polygalifolium honeys and bacterial inhibition for Escherichiacoli (R2 = 0.80) and Staphylococcusaureus (R2 = 0.64). A good prediction of methylglyoxal (R2 0.75) content in honey was achieved using spectroscopic data from the mid infrared (MIR) range in combination with partial least squares regression. These results indicate that robust predictive equations could be developed using MIR for commercial application where the prediction of bacterial inhibition is needed to ‘value’ honeys with methylglyoxal contents in excess of 200 mg/kg.
Resumo:
Near infrared (NIR) spectroscopy was investigated as a potential rapid method of estimating fish age from whole otoliths of Saddletail snapper (Lutjanus malabaricus). Whole otoliths from 209 Saddletail snapper were extracted and the NIR spectral characteristics were acquired over a spectral range of 800–2780 nm. Partial least-squares models (PLS) were developed from the diffuse reflectance spectra and reference-validated age estimates (based on traditional sectioned otolith increments) to predict age for independent otolith samples. Predictive models developed for a specific season and geographical location performed poorly against a different season and geographical location. However, overall PLS regression statistics for predicting a combined population incorporating both geographic location and season variables were: coefficient of determination (R2) = 0.94, root mean square error of prediction (RMSEP) = 1.54 for age estimation, indicating that Saddletail age could be predicted within 1.5 increment counts. This level of accuracy suggests the method warrants further development for Saddletail snapper and may have potential for other fish species. A rapid method of fish age estimation could have the potential to reduce greatly both costs of time and materials in the assessment and management of commercial fisheries.
Resumo:
Yield loss in crops is often associated with plant disease or external factors such as environment, water supply and nutrient availability. Improper agricultural practices can also introduce risks into the equation. Herbicide drift can be a combination of improper practices and environmental conditions which can create a potential yield loss. As traditional assessment of plant damage is often imprecise and time consuming, the ability of remote and proximal sensing techniques to monitor various bio-chemical alterations in the plant may offer a faster, non-destructive and reliable approach to predict yield loss caused by herbicide drift. This paper examines the prediction capabilities of partial least squares regression (PLS-R) models for estimating yield. Models were constructed with hyperspectral data of a cotton crop sprayed with three simulated doses of the phenoxy herbicide 2,4-D at three different growth stages. Fibre quality, photosynthesis, conductance, and two main hormones, indole acetic acid (IAA) and abscisic acid (ABA) were also analysed. Except for fibre quality and ABA, Spearman correlations have shown that these variables were highly affected by the chemical. Four PLS-R models for predicting yield were developed according to four timings of data collection: 2, 7, 14 and 28 days after the exposure (DAE). As indicated by the model performance, the analysis revealed that 7 DAE was the best time for data collection purposes (RMSEP = 2.6 and R2 = 0.88), followed by 28 DAE (RMSEP = 3.2 and R2 = 0.84). In summary, the results of this study show that it is possible to accurately predict yield after a simulated herbicide drift of 2,4-D on a cotton crop, through the analysis of hyperspectral data, thereby providing a reliable, effective and non-destructive alternative based on the internal response of the cotton leaves.
Resumo:
Spot measurements of methane emission rate (n = 18 700) by 24 Angus steers fed mixed rations from GrowSafe feeders were made over 3- to 6-min periods by a GreenFeed emission monitoring (GEM) unit. The data were analysed to estimate daily methane production (DMP; g/day) and derived methane yield (MY; g/kg dry matter intake (DMI)). A one-compartment dose model of spot emission rate v. time since the preceding meal was compared with the models of Wood (1967) and Dijkstra et al. (1997) and the average of spot measures. Fitted values for DMP were calculated from the area under the curves. Two methods of relating methane and feed intakes were then studied: the classical calculation of MY as DMP/DMI (kg/day); and a novel method of estimating DMP from time and size of preceding meals using either the data for only the two meals preceding a spot measurement, or all meals for 3 days prior. Two approaches were also used to estimate DMP from spot measurements: fitting of splines on a 'per-animal per-day' basis and an alternate approach of modelling DMP after each feed event by least squares (using Solver), summing (for each animal) the contributions from each feed event by best-fitting a one-compartment model. Time since the preceding meal was of limited value in estimating DMP. Even when the meal sizes and time intervals between a spot measurement and all feeding events in the previous 72 h were assessed, only 16.9% of the variance in spot emission rate measured by GEM was explained by this feeding information. While using the preceding meal alone gave a biased (underestimate) of DMP, allowing for a longer feed history removed this bias. A power analysis taking into account the sources of variation in DMP indicated that to obtain an estimate of DMP with a 95% confidence interval within 5% of the observed 64 days mean of spot measures would require 40 animals measured over 45 days (two spot measurements per day) or 30 animals measured over 55 days. These numbers suggest that spot measurements could be made in association with feed efficiency tests made over 70 days. Spot measurements of enteric emissions can be used to define DMP but the number of animals and samples are larger than are needed when day-long measures are made.