19 resultados para PWR TYPE REACTORS
Resumo:
Telomere length has been purported as a biomarker for age and could offer a non-lethal method for determining the age of wild-caught individuals. Molluscs, including oysters and abalone, are the basis of important fisheries globally and have been problematic to accurately age. To determine whether telomere length could provide an alternative means of ageing molluscs, we evaluated the relationship between telomere length and age using the commercially important Sydney rock oyster (Saccostrea glomerata). Telomere lengths were estimated from tissues of known age individuals from different age classes, locations and at different sampling times. Telomere length tended to decrease with age only in young oysters less than 18 months old, but no decrease was observed in older oysters aged 2-4 years. Regional and temporal differences in telomere attrition rates were also observed. The relationship between telomere length and age was weak, however, with individuals of identical age varying significantly in their telomere length making it an imprecise age biomarker in oysters.
Resumo:
Multidrug-resistant Escherichia colt sequence type 131 (51131) has recently emerged as a globally distributed cause of extraintestinal infections in humans. Diverse factors have been investigated as explanations for ST131's rapid and successful dissemination, including transmission through animal contact and consumption of food, as suggested by the detection of ST131 in a number of nonhuman species. For example, ST131 has recently been identified as a cause of clinical infection in companion animals and poultry, and both host groups have been confirmed as faecal carriers of ST131. Moreover, a high degree of similarity has been shown among certain ST131 isolates from humans, companion animals, and poultry based on resistance characteristics and genomic background and human and companion animal ST131 isolates tend to exhibit similar virulence genotypes. However, most ST131 isolates from poultry appear to possess specific virulence genes that are typically absent from human and companion animal isolates, including genes associated with avian pathogenic E. coli. Since the number of reported animal and food-associated ST131 isolates is quite small, the role of nonhuman host species in the emergence, dissemination, and transmission of ST131 to humans remains unclear. Nevertheless, given the profound public health importance of the emergent ST131 clonal group, even the limited available evidence indicates a pressing need for further careful study of this significant question.
Resumo:
On-going, high-profile public debate about climate change has focussed attention on how to monitor the soil organic carbon stock (C(s)) of rangelands (savannas). Unfortunately, optimal sampling of the rangelands for baseline C(s) - the critical first step towards efficient monitoring - has received relatively little attention to date. Moreover, in the rangelands of tropical Australia relatively little is known about how C(s) is influenced by the practice of cattle grazing. To address these issues we used linear mixed models to: (i) unravel how grazing pressure (over a 12-year period) and soil type have affected C(s) and the stable carbon isotope ratio of soil organic carbon (delta(13)C) (a measure of the relative contributions of C(3) and C(4) vegetation to C(s)); (ii) examine the spatial covariation of C(s) and delta(13)C; and, (iii) explore the amount of soil sampling required to adequately determine baseline C(s). Modelling was done in the context of the material coordinate system for the soil profile, therefore the depths reported, while conventional, are only nominal. Linear mixed models revealed that soil type and grazing pressure interacted to influence C(s) to a depth of 0.3 m in the profile. At a depth of 0.5 m there was no effect of grazing on C(s), but the soil type effect on C(s) was significant. Soil type influenced delta(13)C to a soil depth of 0.5 m but there was no effect of grazing at any depth examined. The linear mixed model also revealed the strong negative correlation of C(s) with delta(13)C, particularly to a depth of 0.1 m in the soil profile. This suggested that increased C(s) at the study site was associated with increased input of C from C(3) trees and shrubs relative to the C(4) perennial grasses; as the latter form the bulk of the cattle diet, we contend that C sequestration may be negatively correlated with forage production. Our baseline C(s) sampling recommendation for cattle-grazing properties of the tropical rangelands of Australia is to: (i) divide the property into units of apparently uniform soil type and grazing management; (ii) use stratified simple random sampling to spread at least 25 soil sampling locations about each unit, with at least two samples collected per stratum. This will be adequate to accurately estimate baseline mean C(s) to within 20% of the true mean, to a nominal depth of 0.3 m in the profile.
Resumo:
Three polyester bag experiments were conducted with fistulated Bos indicus steers to determine the effect of the amount and type of nitrogen (N) supplement on the digestion rate of forages different in quality. In Experiment 1, test substrates were incubated in polyester bags in the rumen of steers fed ryegrass, pangola grass, speargrass and Mitchell grass hays in a 4 by 4 Latin-square design. In Experiment 2, test substrates were incubated in polyester bags in the rumen of steers fed speargrass hay supplemented with urea and ammonium sulfate (US), branched-chain amino acids with US (USAA), casein, cottonseed meal, yeast and Chlorella algae in a 7 by 3 incomplete Latin-square design. In Experiment 3, test substrates were incubated in polyester bags in the rumen of steers fed Mitchell grass hay supplemented with increasing amounts of US or Spirulina algae (Spirulina platensis). The test substrates used in all experiments were speargrass, Mitchell grass, pangola grass or ryegrass hays. Digestion rate of the ryegrass substrate was higher than that of the speargrass substrate (P < 0.05) in Experiment 1. Supplementation with various N sources increased the degradation rate and effective degradability of all incubated substrates above that apparent in Control steers (P < 0.05; Experiment 2). Supplementation of US and Spirulina increased degradation rate and effective degradability of ryegrass, pangola grass and Mitchell grass substrates above that apparent in Control steers (P < 0.05; Experiment 3). However, there was no further response on digestion rate of the substrates in increasing supplementation levels either for US or Spirulina. In conclusion, rate of digestion was affected by forage physical and anatomical properties. Supplementation with various N sources increased rate of digestion when the Control forage ration was very low in N but once a minimum level of N supplementation was reached, irrespective of form of N or other potential growth factors, there was no further increase in rate of digestion.