18 resultados para P-RBAC
Resumo:
The root-lesion nematodes (RLN) Pratylenchus thornei and P. neglectus are widely distributed in Australian grain producing regions and can reduce the yield of intolerant wheat cultivars by up to 65 , costing the industry ~123 M AUD/year. Consequently, researchers in the northern, southern and western regions have independently developed procedures to evaluate the resistance of cereal cultivars to RLN. To compare results, each of the three laboratories phenotyped a set of 26 and 36 cereal cultivars for relative resistance/susceptibility to P. thornei and P. neglectus respectively. The northern and southern regions also investigated the effects of planting time and experiment duration on RLN reproduction and cultivar ranking. Results show the genetic correlation between cultivars tested using the northern and southern procedures evaluating P. thornei resistance was 0.93. Genetic correlations between experiments using the same procedure, but with different planting times, were 0.99 for both northern and southern procedures. The genetic correlation between cultivars tested using the northern, southern and western procedures evaluating P. neglectus resistance ranged from 0.71 to 0.95. Genetic correlations between experiments using the same procedure but with different planting times ranged from 0.91 to 0.99. This study established that, even though experiments were conducted in different geographic locations and with different trial management practices, the diverse nematode resistance screening procedures ranked cultivars similarly. Consequently, RLN resistance data can be pooled across regions to provide national consensus ratings of cultivars.
Resumo:
With potential to accumulate substantial amounts of above-ground biomass, at maturity an irrigated cotton crop can have taken up more than 20 kg/ha phosphorus and often more than 200 kg/ha of potassium. Despite the size of plant accumulation of P and K, recovery of applied P and K fertilisers by the crop in our field experiment program has poor. Processing large amounts of mature cotton plant material to provide a representative sample for chemical analysis has not been without its challenges, but the questions regarding mechanism of where, how and when the plant is acquiring immobile nutrients remain. Dry matter measured early in the growing season (squaring, first white flower) have demonstrated a 50% increase in crop biomass to applied P (in particular), but it represents only 20% of the total P accumulation by the plant. By first open boll (and onwards), no response in dry matter or P concentration could be detected to P application. A glasshouse study indicated P recovery was greater (to FOB) where it was completely mixed through a profile as opposed to a banded application method suggesting cotton prefers a more diffuse distribution. The relative effects of root morphology, mycorrhizal fungi infection, seasonal growth patterns and how irrigation is applied are areas for future investigation on how, when and where cotton acquires immobile nutrients.
Resumo:
Two field experiments were established in central Queensland at Capella and Gindie to investigate the immediate and then residual benefit of deep placed (20 cm) nutrients in this opportunity cropping system. The field sites had factorial combinations of P (40 kg P/ha), K (200 kg K/ha) and S (40 kg S/ha) and all plots received 100 kg N/ha. No further K or S fertilizers were added during the experiment but some crops had starter P. The Capella site was sown to chickpea in 2012, wheat in 2013 and then chickpea in 2014. The Gindie site was sown to sorghum in 2011/12, chickpea in 2013 and sorghum in early 2015. There were responses to P alone in the first two crops at each site and there were K responses in half the six site years. In year 1 (a good year) both sites showed a 20% grain yield response to only to deep P. In year 2 (much drier) the effects of deep P were still evident at both sites and the effects of K were clearly evident at Gindie. There was a suggestion of an additive P+K effect at Capella and a 50% increase for P+K at Gindie. Year 3 was dry and chickpeas at Capella showed a larger response to P+K but the sorghum at Gindie only responded to deep K. These results indicate that responses to deep placed P and K are durable over an opportunity cropping system, and meeting both requirements is important to achieve yield responses.