59 resultados para Nearshore Regions of Goa
Resumo:
Controlled traffic (matching wheel and row spacing) is being promoted as a means to manage soil compaction in the Australian sugar industry. However, machinery limitations dictate that wider row spacings than the standard 1.5-m single row will need to be adopted to incorporate controlled traffic and many growers are reluctant to widen row spacing for fear of yield penalties. To address these concerns, contrasting row configuration and planting density combinations were investigated for their effect on cane and sugar yield in large-scale experiments in the Gordonvale, Tully, Ingham, Mackay, and Bingera (near Bundaberg) sugarcane-growing regions of Queensland, Australia. The results showed that sugarcane possesses a capacity to compensate for different row configurations and planting densities through variation in stalk number and individual stalk weight. Row configurations ranging from 1.5-m single rows (the current industry standard) to 1.8-m dual rows (50 cm between duals), 2.1-m dual (80 cm between duals) and triple ( 65 cm between triples) rows, and 2.3-m triple rows (65 cm between triples) produced similar yields. Four rows (50 cm apart) on a 2.1-m configuration (quad rows) produced lower yields largely due to crop lodging, while a 1.8-m single row configuration produced lower yields in the plant crop, probably due to inadequate resource availability (water stress/limited radiation interception). The results suggest that controlled traffic can be adopted in the Australian sugar industry by changing from a 1.5-m single row to 1.8-m dual row configuration without yield penalty. Further, the similar yields obtained with wider row configurations (2 m or greater with multiple rows) in these experiments emphasise the physiological and environmental plasticity that exists in sugarcane. Controlled traffic can be implemented with these wider row configurations (>2 m), although it will be necessary to carry out expensive modifications to the current harvester and haul-out equipment. There were indications from this research that not all cultivars were suited to configurations involving multiple rows. The results suggest that consideration be given to assessing clones with different growth habits under a range of row configurations to find the most suitable plant types for controlled traffic cropping systems.
Resumo:
Senna obtusifolia (sicklepod) is an invasive weed of northern Australia, where it significantly impacts agricultural productivity and alters natural ecosystem structure and function. Although currently restricted to northern regions, the potential for S. obtusifolia to spread south is not known. Using the eco-climatic model CLIMEX, this study simulated the potential geographic distribution of S. obtusifolia in Australia under two scenarios. Model parameters for both scenarios were derived from the distribution of S. obtusifolia throughout North and Central America. The first scenario used these base model parameters to predict the distribution of S. obtusifolia in Australia, whilst the second model predicted the distribution of a cold susceptible S. obtusifolia ecotype that is reported to occur in the USA. Both models predicted the potential for an extensive S. obtusifolia distribution, with the first model indicating suitable climatic conditions occurring predominantly in coastal regions from the Northern Territory, to far north Queensland and into northern Victoria. The cold susceptible ecotype displayed a comparatively reduced distribution in the southern parts of Australia, where inappropriate temperatures, a lack of thermal accumulation and cold stress restrict the invasion south to the coastal regions of central New South Wales. The extent of the predicted distribution of both ecotypes of S. obtusifolia reinforces the need for strategic management at a national scale.
Resumo:
Effective study in the native range to identify potential agents underpins all efforts in classical biological control of weeds. Good agents that demonstrate both a high degree of host specificity and the potential to be damaging are a very limited resource and must therefore be carefully studied and considered. The overseas component is often operationally difficult and expensive but can contribute considerably more than a list of herbivores attacking a particular target. While the principles underlying this foreign component have been understood for some time, recently developed technologies and methods can make very significant contributions to foreign studies. Molecular and genetic characterisations of both target weed and agent organism can be increasingly employed to more accurately define the identity and phylogeny of them. Climate matching and modelling software is now available and can be utilised to better select agents for particular regions of concern. Relational databases can store collection information for analysis and future enquiry while quantification of sampling effort, employment of statistical survey methods and analysis by techniques such as rarefaction curves contribute to efficient and effective searching. Obtaining good and timely identifications for discovered agent organisms is perhaps the most serious issue confronting the modern explorer. The diminishing numbers of specialist taxonomists employed at the major museums while international and national protocols demand higher standards of identity exacerbates the issue. Genetic barcoding may provide a very useful tool to overcome this problem. Native-range work also offers under-exploited opportunities for contributing towards predicting safety, abundance and efficacy of potential agents in their target environment.
Resumo:
This review of grader grass (Themeda quadrivalvis) attempts to collate current knowledge and identify knowledge gaps that may require further research. Grader grass is a tropical annual grass native to India that is now spread throughout many of the tropical regions of the world. In Australia, it has spread rapidly since its introduction in the 1930s and is now naturalised in the tropical areas of Queensland, the Northern Territory and Western Australia and extends south along the east coast to northern New South Wales. It is a vigorous grass with limited palatability, that is capable of invading native and improved pastures, cropping land and protected areas such as state and national parks. Grader grass can form dense monocultures that reduce biodiversity, decrease animal productivity and increase the fire hazard in the seasonally dry tropics. Control options are based on herbicides, grazing management and slashing, while overgrazing appears to favour grader grass. The effect of fire on grader grass is inconclusive and needs to be defined. Little is known about the biology and impacts of grader grass in agricultural and protected ecosystems in Australia. In particular, information is needed on soil seed bank longevity, seed production, germination and growth, which would allow the development of management strategies to control this weedy grass.
Resumo:
In Australia, disease caused by betanodavirus has been reported in an increasing number of cultured finfish since the first report of mortalities in 1990. Partial coat protein gene sequences from the T2 or T4 regions of 8 betanodaviruses from barramundi Lates calcarifer, sleepy cod Oxyeleotris lineolata, striped trumpeter Latris lineata, barramundi cod Cromileptes altivelis, Australian bass Macquaria novemaculata and gold-spotted rockcod Epinephelus coioides from several Australian states were determined. Analysis of the 606 bp nucleotide sequences of the T2 region of 4 isolates demonstrated the close relationship with isolates from the red-spotted grouper nervous necrosis virus (RGNNV) genotype and the Cluster Ia subtype. Comparison of a smaller 289 bp sequence from the T4 region identified 2 distinct groupings of the Australian isolates within the RGNNV genotype. Isolates from barramundi from the Northern Territory, barramundi, sleepy cod, barramundi cod and gold-spotted rockcod from Queensland, and striped trumpeter from Tasmania shared a 96.2 to 99.7%, nucleotide identity with each other. These isolates were most similar to the RGNNV genotype Cluster Ia. Isolates from Australian bass from New South Wales and from barramundi from South Australia shared a 98.6% sequence identity with each other. However, these isolates only shared an 85.8 to 87.9%, identity with the other Australian isolates and representative RGNNV isolates. The closest nucleotide identity to sequences reported in the literature for the New South Wales and South Australian isolates was to an Australian barramundi isolate (Ba94Aus) from 1994. These 2 Australian isolates formed a new subtype within the RGNNV genotype, which is designated as Cluster Ic.
Resumo:
A total of 63 isolates of Pasteurella multocida from Australian poultry, all associated with fowl cholera outbreaks, and three international reference strains, representing the three subspecies within P. multocida were used to develop a multi-locus sequence typing scheme. Primers were designed for conserved regions of seven house-keeping enzymes - adk, est, gdh, mdh, pgi, pmi and zwf - and internal fragments of 570-784 bp were sequenced for all isolates and strains. The number of alleles at the different loci ranged from 11 to 20 and a total of 29 allelic profiles or sequence types were recognised amongst the 66 strains. There was a strong concordance between the MLST data and the existing multi-locus enzyme electrophoresis and ribotyping data. When used to study a sub-set of isolates with a known detailed epidemiological history, the MLST data matched the results given by restriction endonuclease analysis, pulsed-field gel electrophoresis, ribotyping and REP-PCR. The MLST scheme provides a high level of resolution and is an excellent tool for studying the population structure and epidemiology of P. multocida.
Resumo:
Thaumastocoris peregrinus is a recently introduced invertebrate pest of non-native Eucalyptus plantations in the Southern Hemisphere. It was first reported from South Africa in 2003 and in Argentina in 2005. Since then, populations have grown explosively and it has attained an almost ubiquitous distribution over several regions in South Africa on 26 Eucalyptus species. Here we address three key questions regarding this invasion, namely whether only one species has been introduced, whether there were single or multiple introductions into South Africa and South America and what the source of the introduction might have been. To answer these questions, bar-coding using mitochondrial DNA (COI) sequence diversity was used to characterise the populations of this insect from Australia, Argentina, Brazil, South Africa and Uruguay. Analyses revealed three cryptic species in Australia, of which only T. peregrinus is represented in South Africa and South America. Thaumastocoris peregrinus populations contained eight haplotypes, with a pairwise nucleotide distance of 0.2-0.9% from seventeen locations in Australia. Three of these haplotypes are shared with populations in South America and South Africa, but the latter regions do not share haplotypes. These data, together with the current distribution of the haplotypes and the known direction of original spread in these regions, suggest that at least three distinct introductions of the insect occurred in South Africa and South America before 2005. The two most common haplotypes in Sydney, one of which was also found in Brisbane, are shared with the non-native regions. Sydney populations of T. peregrinus, which have regularly reached outbreak levels in recent years, might thus have served as source of these three distinct introductions into other regions of the Southern Hemisphere.
Resumo:
Premature or abnormal softening of persimmon fruit within 3-7 days after harvest is a major physiological problem of non-astringent persimmon cultivars grown in subtropical regions of Australia. Up to 30% of consignments may soften rapidly frequently overnight, often resulting in the flesh becoming very soft, completely translucent, and impossible to handle. Incidence of premature soft fruit can vary with season and production location. To study the incidence of this problem, we conducted surveys of fruit harvested from five environmentally-diverse regions of Australia over a two-year period. We found wide variation in the rate of both premature softening and normal softening with differences of up 37 days between orchards in percentage of fruit reaching 50% soft. We found that the rate of fruit softening was exacerbated by lower calcium concentrations at fruit set, shorter fruit development periods and heavier rainfall during the fruit development period. The implications of our findings, in terms of orchard management, export and domestic marketing strategies are discussed.
Resumo:
Stenotaphrum secundatum (Walter) Kuntze, known as "St Augustinegrass" in the USA and "buffalo grass" in Australia, is a widely used turfgrass species in subtropical and warm temperate regions of the world. Throughout its range, S. secundatum encompasses a great deal of genetic diversity, which can be exploited in future breeding programs. To understand better the range of genetic variation in Australia, morphological-agronomic classification and DNA profiling were used to characterize and group 17 commercial cultivars and 18 naturalized genotypes collected from across Australia. Historically, there have been two main sources of S. secundatum in Austalia: one a reputedly sterile triploid race (the so-called Cape deme) from South Africa now represented by the Australian Common group naturalized in all Australian states; and the other a "normal" fertile diploid race naturalized north from Sydney along the NSW coast, which is referred to here as the Australian Commercial group because it has been the source of most of the new cultivars recently developed in Australia. Over the past 30 years, some US cultivars have also been introduced and commercialized; these are again "normal" fertile diploids, but from a group distinclty different from the Australian Commercial genotypes as shown by both DNA analysis and grouping based on 28 morphological-agronomic characteristics. The implications for future breeding within S. secundatum in Australia are discussed.
Resumo:
Mastreviruses (family Geminiviridae) that infect monocotyledonous plants occur throughout the temperate and tropical regions of Asia, Africa, Europe and Australia. Despite the identification of a very diverse array of mastrevirus species whose members infect African monocots, few such species have been discovered in other parts of the world. For example, the sequence of only a single monocot-infecting mastrevirus, Chloris striate mosaic virus (CSMV), has been reported so far from Australia, even though earlier biological and serological studies suggested that other distinct mastreviruses were present. Here, we have obtained the complete nucleotide sequence of a virus from the grass Digitaria didactyla originating from Australia. Analysis of the sequence shows the virus to be a typical mastrevirus, with four open reading frames, two in each orientation, separated by two non-coding intergenic regions. Although it showed the highest levels of sequence identity to CSMV (68.7%), their sequences are sufficiently diverse for the virus to be considered a member of a new species in the genus Mastrevirus, based on the present species demarcation criteria. We propose that the name first used during the 1980s be used for this species, Digitaria didactyla striate mosaic virus (DDSMV).
Resumo:
To increase numbers and reproduction in Ongole and Bali cows by as much as 60% in Indonesia requires use of rice straw for maintenance of cows and higher quality feed and crop by-products for growth and fattening of calves. These feedstuffs exist in large quantities. The project will couple feeding systems with management (controlled mating with a selected bull, weaning, compost production), previously developed by the project team, in village-based adaptive research across the main cattle regions of Indonesia, with emphasis on East Java. The project will link with research on nutrition interactions with reproduction of cows in indigenous pastoral systems in north Australia.
Resumo:
Toxic Pimelea species (desert riceflower) are naturally occurring species found throughout beef cattle regions of Queensland, New South Wales, South Australia and the Northern Territory. Three species of Pimelea (simplex, elongata, and trichostachya) are poisonous to livestock and potentially fatal to cattle, with serious economic consequences through the loss of production, stock deaths and the costs of agistment. A better understanding of the ecology of the plant/disease is required to develop best practice to manage Pimelea in cattle-producing areas. Development of a chemical assay for the toxin (simplexin) is a key component of the current research project enabling toxin levels to be related to stage of plant growth, environmental and climatic factors.
Resumo:
The goal of the Program is to contribute to economic growth in the Philippines through increased income and improved livelihoods of tropical fruit growers in southern Philippines. The purpose of the Program is to improve the smallholder and industry profitability and export competitiveness of selected tropical fruits industries in the southern Philippines. Fruit crops to be targeted are mango, papaya, durian and jackfruit. The primary audience for the outcomes of this Program are medium to large scale commercial fruit growers and farmers predominantly in the regions of Leyte (VIII), northern Mindanao/Cagayan de Oro (X) and southern Mindanao/Davao (XI).
Resumo:
The farming systems and agribusinesses of the inland Burnett and southern coastal cropping regions of Queensland are becoming increasingly interlinked as grain legume crops, a key component of dryland cropping systems, become more firmly entrenched in the coastal sugarcane cropping areas. Soybeans, peanuts and possibly winter cereals like barley have a real and demonstrated role in sugarcane rotations, and assistance with the integration of those crops into viable and sustainable cropping systems with sugarcane will be critical to the futuer development of these industries.
Resumo:
In this report we analyse the private financial-economic impacts of transitioning to improved sugarcane management in the National Resource Management regions of the Wet Tropics, Burdekin Dry Tropics and Mackay Whitsundays. In order to do so, we: 1) compare farm GMs; 2) present information on capital investment associated with the transition; 3) perform a net present value analysis of the investments and; 4) undertake a risk analysis for cane and legume yields and prices. It must be noted that transaction costs are not captured within this project.