27 resultados para Music, Influence of.
Resumo:
Corymbia species from different sections hybridize readily, with some of increasing economic importance to plantation forestry. This study explores the locations of reproductive barriers between interspecific Corymbia hybrids and investigates the reproductive success of a wide taxonomic range of C. torelliana hybrid crosses. Pollen, pistil and embryo development were investigated for four C. torelliana crosses (C. torelliana, C. citriodora subsp. citriodora, C. tessellaris and C. intermedia) using fluorescent and standard microscopy to identify the locations of interspecific reproductive isolating barriers. Corymbia torelliana was also crossed with 16 taxa, representing six of the seven Corymbia sections, both Corymbia subgenera and one species each from the related genera, Angophora and Eucalyptus. All crosses were assessed for capsule and seed yields. Interspecific C. torelliana hybridization was controlled by pre-zygotic reproductive isolating barriers inhibiting pollen adhesion to the stigma, pollen germination, pollen tube growth in the style and pollen tube penetration of the micropyle. Corymbia torelliana (subgenus Blakella, sect. Torellianae) was successfully hybridized with Corymbia species from subgenus Blakella, particularly C. citriodora subsp. citriodora, C. citriodora subsp. variegata, C. henryi (sect. Maculatae) and C. tessellaris (sect. Abbreviatae), and subgenus Corymbia, particularly C. clarksoniana and C. erythrophloia (sect. Septentrionales). Attempted intergeneric hybrids between C. torelliana and either Angophora floribunda or Eucalyptus pellita were unsuccessful. Corymbia hybrids were formed between species from different sections and subgenera, but not with species from the related genera Angophora or Eucalyptus. Reproductive isolation between the interspecific Corymbia hybrid crosses was controlled by early- and late-acting pre-zygotic isolating barriers, with reproductive success generally decreasing with increasing taxonomic distance between parent species. These findings support the monophyly of Corymbia and the close relationships of infrageneric clades. The hybridizing propensity of Corymbia species provides opportunities for breeding but suggests risks of environmental gene flow. © The Author 2012. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Resumo:
Global cereal production will need to increase by 50% to 70% to feed a world population of about 9 billion by 2050. This intensification is forecast to occur mostly in subtropical regions, where warm and humid conditions can promote high N2O losses from cropped soils. To secure high crop production without exacerbating N2O emissions, new nitrogen (N) fertiliser management strategies are necessary. This one-year study evaluated the efficacy of a nitrification inhibitor (3,4-dimethylpyrazole phosphate—DMPP) and different N fertiliser rates to reduce N2O emissions in a wheat–maize rotation in subtropical Australia. Annual N2O emissions were monitored using a fully automated greenhouse gas measuring system. Four treatments were fertilized with different rates of urea, including a control (40 kg-N ha−1 year−1), a conventional N fertiliser rate adjusted on estimated residual soil N (120 kg-N ha−1 year−1), a conventional N fertiliser rate (240 kg-N ha−1 year−1) and a conventional N fertiliser rate (240 kg-N ha−1 year−1) with nitrification inhibitor (DMPP) applied at top dressing. The maize season was by far the main contributor to annual N2O emissions due to the high soil moisture and temperature conditions, as well as the elevated N rates applied. Annual N2O emissions in the four treatments amounted to 0.49, 0.84, 2.02 and 0.74 kg N2O–N ha−1 year−1, respectively, and corresponded to emission factors of 0.29%, 0.39%, 0.69% and 0.16% of total N applied. Halving the annual conventional N fertiliser rate in the adjusted N treatment led to N2O emissions comparable to the DMPP treatment but extensively penalised maize yield. The application of DMPP produced a significant reduction in N2O emissions only in the maize season. The use of DMPP with urea at the conventional N rate reduced annual N2O emissions by more than 60% but did not affect crop yields. The results of this study indicate that: (i) future strategies aimed at securing subtropical cereal production without increasing N2O emissions should focus on the fertilisation of the summer crop; (ii) adjusting conventional N fertiliser rates on estimated residual soil N is an effective practice to reduce N2O emissions but can lead to substantial yield losses if the residual soil N is not assessed correctly; (iii) the application of DMPP is a feasible strategy to reduce annual N2O emissions from sub-tropical wheat–maize rotations. However, at the N rates tested in this study DMPP urea did not increase crop yields, making it impossible to recoup extra costs associated with this fertiliser. The findings of this study will support farmers and policy makers to define effective fertilisation strategies to reduce N2O emissions from subtropical cereal cropping systems while maintaining high crop productivity. More research is needed to assess the use of DMPP urea in terms of reducing conventional N fertiliser rates and subsequently enable a decrease of fertilisation costs and a further abatement of fertiliser-induced N2O emissions.
Resumo:
Objective To describe the influence of the dingo (Canis lupus dingo) on the past, present and future distributions of sheep in Australia. Design The role of the dingo in the rise and fall of sheep numbers is reviewed, revised data are provided on the present distribution and density of sheep and dingoes, and historical patterns of sheep distribution are used to explore the future of rangeland sheep grazing. Results Dingoes are a critical causal factor in the distribution of sheep at the national, regional and local levels. Dingo predation contributed substantially to the historical contraction of the sheep industry to its present-day distribution, which is almost exclusively confined to areas within fenced dingo exclusion zones. Dingo populations and/or their influence are now present and increasing in all sheep production zones of Australia, inclusive of areas that were once dingo free'. Conclusions Rangeland production of wool and sheep meat is predicted to disappear within 30-40 years if the present rate of contraction of the industry continues unabated. Understanding the influence of dingoes on sheep production may help refine disease response strategies and help predict the future distribution of sheep and their diseases.
Resumo:
The adoption of dry direct seeding of rice in many Asian countries has resulted in increased interest among weed scientists to improve weed management strategies, because of the large and complex weed flora associated with dry-seeded rice (DSR). Tillage and cover cropping practices can be integrated into weed management strategies as these have been known to affect weed emergence for several ecological reasons. A study was conducted in the summer seasons of 2012 and 2013 at the Punjab Agricultural University, Ludhiana, India, to evaluate the effects of tillage, cover cropping, and herbicides on weed growth and grain yield of DSR. Most of the weed species (Echinochloa crus-galli, Echinochloa colona, Eleusine indica, and Euphorbia hirta) under study tended to populate the cover crop (CC) treatment more than the no-cover crop (no-CC) treatment. Zero tillage (ZT) resulted in higher weed densities of most of the weed species studied. The interaction effects of these treatments suggest that lesser herbicide efficacy in ZT and CC plots led to higher weed pressure and weed biomass. Grain yield was significantly higher in the conventional tillage system (2.40–3.32 t ha−1), because of lesser weed pressure, than in ZT (2.08–2.73 t ha−1). Almost all weed species increased in number and biomass production in the second year (2013) compared with the preceding year. Herbicide application (pendimethalin followed by bispyribac-sodium) alone, though significantly increased DSR grain yield over that of the unsprayed check, resulted in lesser grain yield compared with the weed-free check (5.07–5.12 t ha−1) by 14% and 27% in 2012 and 2013, respectively. This was mainly due to the buildup of biomass by weeds that escaped from herbicide application. The study reveals that conservation practices such as ZT can form an important component of integrated weed management in DSR, provided that herbicide efficacy be improved by adjusting rate and time of herbicide application in such systems.
Resumo:
Weather is a general stochastic influence on the life history of weeds. In contrast, anthropogenic disturbance (e.g. land use) is an important deterministic influence on weed demography. Our aim with this study was to investigate the relative contributions of land use and weather on the demography of Lantana camara (lantana), a weed of agricultural and natural habitats, based on the intensive monitoring of lantana populations under three land uses (viz. farm[pasture], and burnt and grazed forests) in subtropical Australia. Lantana populations were growing vigorously across all land uses (asymptotic population growth rate, lambda > 3). Examination of historical demography using retrospective perturbation analyses showed that weather was a strong influence on lantana demography with the transition from an El Nino (2008-09) to a La Nina (2009-10) year having a strong positive effect on population growth rate. This effect was most marked at the grazed site, and to a lesser extent at the burnt site, with seedling-to-juvenile and juvenile-to-adult transitions contributing most to these effects. This is likely the result of burning and grazing having eliminated/reduced interspecific competition at these sites. Prospective perturbation analyses revealed that lambda was most sensitive to proportionate changes in growth transitions, followed by fecundity and survival transitions. Examination of context-specific patterns in elasticity revealed that growth and fecundity transitions are likely to be the more critical vital rates to reduce lambda in wet years at the burnt and grazed forest sites, compared to the farm/pasture site. Management of lantana may need to limit the transition of juveniles into the adult stages, especially in sites where lantana is free from competition (e.g. in the presence of fire or grazing), and this particularly needs to be achieved in wet years. Collectively, these results shed light on aspects of spatial and temporal variation in the demography of lantana, and offer insights on its context-specific management.
Resumo:
Weather is a general stochastic influence on the life history of weeds. In contrast, anthropogenic disturbance (e.g. land use) is an important deterministic influence on weed demography. Our aim with this study was to investigate the relative contributions of land use and weather on the demography of Lantana camara (lantana), a weed of agricultural and natural habitats, based on the intensive monitoring of lantana populations under three land uses (viz. farm[pasture], and burnt and grazed forests) in subtropical Australia. Lantana populations were growing vigorously across all land uses (asymptotic population growth rate, λ > 3). Examination of historical demography using retrospective perturbation analyses showed that weather was a strong influence on lantana demography with the transition from an El Niño (2008–09) to a La Niña (2009–10) year having a strong positive effect on population growth rate. This effect was most marked at the grazed site, and to a lesser extent at the burnt site, with seedling-to-juvenile and juvenile-to-adult transitions contributing most to these effects. This is likely the result of burning and grazing having eliminated/reduced interspecific competition at these sites. Prospective perturbation analyses revealed that λ was most sensitive to proportionate changes in growth transitions, followed by fecundity and survival transitions. Examination of context-specific patterns in elasticity revealed that growth and fecundity transitions are likely to be the more critical vital rates to reduce λ in wet years at the burnt and grazed forest sites, compared to the farm/pasture site. Management of lantana may need to limit the transition of juveniles into the adult stages, especially in sites where lantana is free from competition (e.g. in the presence of fire or grazing), and this particularly needs to be achieved in wet years. Collectively, these results shed light on aspects of spatial and temporal variation in the demography of lantana, and offer insights on its context-specific management.
Resumo:
Characterization of drought environment types (ETs) has proven useful for breeding crops for drought-prone regions. Here we consider how changes in climate and atmospheric carbon dioxide (CO2) concentrations will affect drought ET frequencies in sorghum and wheat systems of Northeast Australia. We also modify APSIM (the Agricultural Production Systems Simulator) to incorporate extreme heat effects on grain number and weight, and then evaluate changes in the occurrence of heat-induced yield losses of more than 10, as well as the co-occurrence of drought and heat. More than six million simulations spanning representative locations, soil types, management systems, and 33 climate projections led to three key findings. First, the projected frequency of drought decreased slightly for most climate projections for both sorghum and wheat, but for different reasons. In sorghum, warming exacerbated drought stresses by raising the atmospheric vapor pressure deficit and reducing transpiration efficiency (TE), but an increase in TE due to elevated CO2 more than offset these effects. In wheat, warming reduced drought stress during spring by hastening development through winter and reducing exposure to terminal drought. Elevated CO2 increased TE but also raised radiation use efficiency and overall growth rates and water use, thereby offsetting much of the drought reduction from warming. Second, adding explicit effects of heat on grain number and grain size often switched projected yield impacts from positive to negative. Finally, although average yield losses associated with drought will remain generally higher than for heat stress for the next half century, the relative importance of heat is steadily growing. This trend, as well as the likely high degree of genetic variability in heat tolerance, suggests that more emphasis on heat tolerance is warranted in breeding programs. At the same time, work on drought tolerance should continue with an emphasis on drought that co-occurs with extreme heat. This article is protected by copyright. All rights reserved.
Resumo:
Characterization of drought environment types (ETs) has proven useful for breeding crops for drought-prone regions. Here we consider how changes in climate and atmospheric carbon dioxide (CO2) concentrations will affect drought ET frequencies in sorghum and wheat systems of Northeast Australia. We also modify APSIM (the Agricultural Production Systems Simulator) to incorporate extreme heat effects on grain number and weight, and then evaluate changes in the occurrence of heat-induced yield losses of more than 10%, as well as the co-occurrence of drought and heat. More than six million simulations spanning representative locations, soil types, management systems, and 33 climate projections led to three key findings. First, the projected frequency of drought decreased slightly for most climate projections for both sorghum and wheat, but for different reasons. In sorghum, warming exacerbated drought stresses by raising the atmospheric vapor pressure deficit and reducing transpiration efficiency (TE), but an increase in TE due to elevated CO2 more than offset these effects. In wheat, warming reduced drought stress during spring by hastening development through winter and reducing exposure to terminal drought. Elevated CO2 increased TE but also raised radiation use efficiency and overall growth rates and water use, thereby offsetting much of the drought reduction from warming. Second, adding explicit effects of heat on grain number and grain size often switched projected yield impacts from positive to negative. Finally, although average yield losses associated with drought will remain generally higher than for heat stress for the next half century, the relative importance of heat is steadily growing. This trend, as well as the likely high degree of genetic variability in heat tolerance, suggests that more emphasis on heat tolerance is warranted in breeding programs. At the same time, work on drought tolerance should continue with an emphasis on drought that co-occurs with extreme heat. This article is protected by copyright. All rights reserved.
Resumo:
Key message Log-end splitting is one of the single most important defects in veneer logs. We show that log-end splitting in the temperate plantation species Eucalyptus nitens varies across sites and within-tree log position and increases with time in storage. Context Log-end splitting is one of the single most important defects in veneer logs because it can substantially reduce the recovery of veneer sheets. Eucalyptus nitens can develop log-end splits, but factors affecting log-end splitting in this species are not well understood. Aims The present study aims to describe the effect of log storage and steaming on the development of log-end splitting in logs from different plantations and log positions within the tree. Methods The study was conducted on upper and lower logs from each of 41 trees from three 20–22-year-old Tasmanian E. nitens plantations. Log-end splitting was assessed immediately after felling, after transport and storage in a log-yard, and just before peeling. A pre-peeling steam treatment was applied to half the logs. Results Site had a significant effect on splitting, and upper logs split more than lower logs with storage. Splitting increased with tree diameter breast height (DBH), but this relationship varied with site. The most rapidly growing site had more splitting even after accounting for DBH. No significant effect of steaming was detected. Conclusion Log-end splitting varied across sites and within-tree log position and increased with time in storage.
Resumo:
Recolonisation of soil by macrofauna (especially ants, termites and earthworms) in rehabilitated open-cut mine sites is inevitable and, in terms of habitat restoration and function, typically of great value. In these highly disturbed landscapes, soil invertebrates play a major role in soil development (macropore configuration, nutrient cycling, bioturbation, etc.) and can influence hydrological processes such as infiltration, seepage, runoff generation and soil erosion. Understanding and quantifying these ecosystem processes is important in rehabilitation design, establishment and subsequent management to ensure progress to the desired end goal, especially in waste cover systems designed to prevent water reaching and transporting underlying hazardous waste materials. However, the soil macrofauna is typically overlooked during hydrological modelling, possibly due to uncertainties on the extent of their influence, which can lead to failure of waste cover systems or rehabilitation activities. We propose that scientific experiments under controlled conditions and field trials on post-mining lands are required to quantify (i) macrofauna–soil structure interactions, (ii) functional dynamics of macrofauna taxa,and (iii) their effects on macrofauna and soil development over time. Such knowledge would provide crucial information for soil water models, which would increase confidence in mine waste cover design recommendations and eventually lead to higher likelihood of rehabilitation success of open-cut mining land.
Resumo:
Recent investigations into plant tissues have indicated that the free form of the natural polyphenolic antioxidant, ellagic acid (EA), is much more plentiful than first envisaged; consequently a re-assessment of solvent systems for the extraction of this water-insoluble form is needed. As EA solubility and its UV-Vis spectrum, commonly used for detection and quantification, are both governed by pH, an understanding of this dependence is vital if accurate EA measurements are to be achieved. After evaluating the pH effects on the solubility and UV-Vis spectra of commercial EA, an extraction protocol was devised that promoted similar pH conditions for both standard solutions and plant tissue extracts. The extraction so devised followed by HPLC with photodiode-array detection (DAD) provided a simple, sensitive and validated methodology that determined free EA in a variety of plant extracts. The use of 100 % methanol or a triethanolamine-based mixture as the standard dissolving solvents were the best choices, while these higher pH-generating solvents were more efficient in extracting EA from the plants tested with the final choice allied to the plants’ natural acidity. Two of the native Australian plants anise myrtle (Syzygium anisatum) and Kakadu plum (Terminalia ferdinandiana) exhibited high concentrations of free EA. Furthermore, the dual approach to measuring EA UV-Vis spectra made possible an assessment of the effect of acidified eluent on EA spectra when the DAD was employed.