24 resultados para Multi-path mitigation
Resumo:
In multi-species fisheries managed under ITQs, the existence of joint production may lead to complex catch-quota balancing issues. Previous modelling and experimental research suggest that, in such fisheries, some fishers may benefit from the ability to trade packages of fishing quotas, rather than fulfil their quota needs by simultaneously bidding on separate single-species quota markets. This note presents evidence of naturally occurring package trades in a real fishery. Based on this evidence, we suggest that further empirical and modelling research is required on the potential and limitations of package quota trading in mixed fisheries managed with ITQs. © 2014.
Resumo:
Agricultural systems models worldwide are increasingly being used to explore options and solutions for the food security, climate change adaptation and mitigation and carbon trading problem domains. APSIM (Agricultural Production Systems sIMulator) is one such model that continues to be applied and adapted to this challenging research agenda. From its inception twenty years ago, APSIM has evolved into a framework containing many of the key models required to explore changes in agricultural landscapes with capability ranging from simulation of gene expression through to multi-field farms and beyond. Keating et al. (2003) described many of the fundamental attributes of APSIM in detail. Much has changed in the last decade, and the APSIM community has been exploring novel scientific domains and utilising software developments in social media, web and mobile applications to provide simulation tools adapted to new demands. This paper updates the earlier work by Keating et al. (2003) and chronicles the changing external challenges and opportunities being placed on APSIM during the last decade. It also explores and discusses how APSIM has been evolving to a “next generation” framework with improved features and capabilities that allow its use in many diverse topics.
Resumo:
Pathogens and pests of stored grains move through complex dynamic networks linking fields, farms, and bulk storage facilities. Human transport and other forms of dispersal link the components of this network. A network model for pathogen and pest movement through stored grain systems is a first step toward new sampling and mitigation strategies that utilize information about the network structure. An understanding of network structure can be applied to identifying the key network components for pathogen or pest movement through the system. For example, it may be useful to identify a network node, such as a local grain storage facility, through which grain from a large number of fields will be accumulated and move through the network. This node may be particularly important for sampling and mitigation. In some cases more detailed information about network structure can identify key nodes that link two large sections of the network, such that management at the key nodes will greatly reduce the risk of spread between the two sections. In addition to the spread of particular species of pathogens and pests, we also evaluate the spread of problematic subpopulations, such as subpopulations with pesticide resistance. We present an analysis of stored grain pathogen and pest networks for Australia and the United States.
Resumo:
A holistic approach to stock structure studies utilises multiple different techniques on the same individuals sampled from selected populations and combines results across spatial and temporal scales to produce a weight of evidence conclusion. It is the most powerful and reliable source of information to use in formulating resource management and monitoring plans. Few examples of the use of a holistic approach in stock structure studies exist, although more recently this is changing. Using such an approach makes integration of results from each technique challenging. An integrated stock definition (ISD) approach for holistic stock structure studies was developed in this study to aid in the appropriate interpretation of stock structure results to guide the determination of fishery management units. The ISD approach is applied herein to a study of the northern Australian endemic grey mackerel, Scomberomorus semifasciatus (Scombridae). Analyses of genetic (mitochondrial DNA and microsatellites), parasite, otolith stable isotope, and growth data are synthesised to determine the stock structure of S. semifasciatus across northern Australia. Integration of the results from all techniques identified at least six S. semifasciatus stocks for management purposes. Further, the use of the ISD approach provided a simple basis for integrating multiple techniques and for their interpretation. The use of this holistic approach was a powerful tool in providing greater certainty about the appropriate management units for S. semifasciatus. Future stock structure studies investigating spatial management questions in the fisheries context should adopt a holistic approach and apply the ISD approach for a more accurate definition of biological stocks to improve fisheries management.
Resumo:
Methane is a potent greenhouse gas with a global warming potential ∼28 times that of carbon dioxide. Consequently, sources and sinks that influence the concentration of methane in the atmosphere are of great interest. In Australia, agriculture is the primary source of anthropogenic methane emissions (60.4% of national emissions, or 3260kt-1methaneyear-1, between 1990 and 2011), and cropping and grazing soils represent Australia's largest potential terrestrial methane sink. As of 2011, the expansion of agricultural soils, which are ∼70% less efficient at consuming methane than undisturbed soils, to 59% of Australia's land mass (456Mha) and increasing livestock densities in northern Australia suggest negative implications for national methane flux. Plant biomass burning does not appear to have long-term negative effects on methane flux unless soils are converted for agricultural purposes. Rice cultivation contributes marginally to national methane emissions and this fluctuates depending on water availability. Significant available research into biological, geochemical and agronomic factors has been pertinent for developing effective methane mitigation strategies. We discuss methane-flux feedback mechanisms in relation to climate change drivers such as temperature, atmospheric carbon dioxide and methane concentrations, precipitation and extreme weather events. Future research should focus on quantifying the role of Australian cropping and grazing soils as methane sinks in the national methane budget, linking biodiversity and activity of methane-cycling microbes to environmental factors, and quantifying how a combination of climate change drivers will affect total methane flux in these systems.
Resumo:
Retrospective identification of fire severity can improve our understanding of fire behaviour and ecological responses. However, burnt area records for many ecosystems are non-existent or incomplete, and those that are documented rarely include fire severity data. Retrospective analysis using satellite remote sensing data captured over extended periods can provide better estimates of fire history. This study aimed to assess the relationship between the Landsat differenced normalised burn ratio (dNBR) and field measured geometrically structured composite burn index (GeoCBI) for retrospective analysis of fire severity over a 23 year period in sclerophyll woodland and heath ecosystems. Further, we assessed for reduced dNBR fire severity classification accuracies associated with vegetation regrowth at increasing time between ignition and image capture. This was achieved by assessing four Landsat images captured at increasing time since ignition of the most recent burnt area. We found significant linear GeoCBI–dNBR relationships (R2 = 0.81 and 0.71) for data collected across ecosystems and for Eucalyptus racemosa ecosystems, respectively. Non-significant and weak linear relationships were observed for heath and Melaleuca quinquenervia ecosystems, suggesting that GeoCBI–dNBR was not appropriate for fire severity classification in specific ecosystems. Therefore, retrospective fire severity was classified across ecosystems. Landsat images captured within ~ 30 days after fire events were minimally affected by post burn vegetation regrowth.
Resumo:
Pratylenchus thornei is a root-lesion nematode (RLN) of economic significance in the grain growing regions of Australia. Chickpea (Cicer arietinum) is a significant legume crop grown throughout these regions, but previous testing found most cultivars were susceptible to P. thornei. Therefore, improved resistance to P. thornei is an important objective of the Australian chickpea breeding program. A glasshouse method was developed to assess resistance of chickpea lines to P. thornei, which requires relatively low labour and resource input, and hence is suited to routine adoption within a breeding program. Using this method, good differentiation of chickpea cultivars for P. thornei resistance was measured after 12 weeks. Nematode multiplication was higher for all genotypes than the unplanted control, but of the 47 cultivars and breeding lines tested, 17 exhibited partial resistance, allowing less than two fold multiplication. The relative differences in resistance identified using this method were highly heritable (0.69) and were validated against P. thornei data from seven field trials using a multi-environment trial analysis. Genetic correlations for cultivar resistance between the glasshouse and six of the field trials were high (>0.73). These results demonstrate that resistance to P. thornei in chickpea is highly heritable and can be effectively selected in a limited set of environments. The improved resistance found in a number of the newer chickpea cultivars tested shows that some advances have been made in the P. thornei resistance of Australian chickpea cultivars, and that further targeted breeding and selection should provide incremental improvements.
Resumo:
Variety selection in perennial pasture crops involves identifying best varieties from data collected from multiple harvest times in field trials. For accurate selection, the statistical methods for analysing such data need to account for the spatial and temporal correlation typically present. This paper provides an approach for analysing multi-harvest data from variety selection trials in which there may be a large number of harvest times. Methods are presented for modelling the variety by harvest effects while accounting for the spatial and temporal correlation between observations. These methods provide an improvement in model fit compared to separate analyses for each harvest, and provide insight into variety by harvest interactions. The approach is illustrated using two traits from a lucerne variety selection trial. The proposed method provides variety predictions allowing for the natural sources of variation and correlation in multi-harvest data.