39 resultados para Migration Rates
Resumo:
The Wet Tropics bioregion of north Queensland has been identified as an area of global significance. The world-heritage-listed rainforests have been invaded by feral pigs (Sus scrofa) that are perceived to cause substantial environmental damage. A community perception exists of an annual altitudinal migration of the feral-pig population. The present study describes the movements of 29 feral pigs in relation to altitudinal migration (highland, transitional and lowland areas). Feral pigs were sedentary and stayed within their home range throughout a 4-year study period. No altitudinal migration was detected; pigs moved no more than a mean distance of 1.0 km from the centre of their calculated home ranges. There was no significant difference between the mean (+/- 95% confidence interval) aggregate home ranges for males (8.7 +/- 4.3 km², n = 15) and females (7.2 +/- 1.8 km², n = 14). No difference in home range was detected among the three altitudinal areas: 7.2 +/- 2.4 km² for highland, 6.2 +/- 3.9 km² for transitional and 9.9 +/- 5.3 km² for lowland areas. The aggregate mean home range for all pigs in the present study was 8.0 +/- 2.4 km². The study also assessed the influence seasons had on the home range of eight feral pigs on the rainforest boundary; home ranges did not significantly vary in size between the tropical wet and dry seasons, although the mean home range in the dry season (7.7 +/- 6.9 km²) was more than twice the home range in the wet season (2.9 +/- 0.8 km²). Heavier pigs tended to have larger home ranges. The results of the present study suggest that feral pigs are sedentary throughout the year so broad-scale control techniques need to be applied over sufficient areas to encompass individual home ranges. Control strategies need a coordinated approach if a long-term reduction in the pig population is to be achieved.
Resumo:
An experiment using herds of similar to 20 cows (farmlets) assessed the effects of high stocking rates on production and profitability of feeding systems based on dryland and irrigated perennial ryegrass-based pastures in a Mediterranean environment in South Australia over 4 years. A target level of milk production of 7000 L/cow.year was set, based on predicted intakes of 2.7 t DM/cow.year as concentrates, pasture intakes from 1.5 to 2.7 t/cow.year and purchased fodder. In years 1 and 2, up to 1.5 t DM/cow.year of purchased fodder was used and in years 3 and 4 the amounts were increased if necessary to enable levels of milk production per cow to be maintained at target levels. Cows in dryland farmlets calved in March to May inclusive and were stocked at 2.5, 2.9, 3.3, 3.6 and 4.1 cows/ha, while those in irrigated farmlets calved in August to October inclusive and were stocked at 4.1, 5.2, 6.3 and 7.4 cows/ha. In the first 2 years, when inputs of purchased fodder were limited, milk production per cow was reduced with higher stocking rates (P < 0.01), but in years 3 and 4 there were no differences. Mean production was 7149 kg/cow.year in years 1 and 2, and 8162 kg/cow.year in years 3 and 4. Production per hectare was very closely related to stocking rate in all years (P < 0.01), increasing from 18 to 34 t milk/ha.year for dryland farmlets (1300 to 2200 kg milk solids/ha) and from 30 to 60 t milk/ha.year for irrigated farmlets (2200 to 4100 kg milk solids/ha). Almost all of these increases were attributed to the increases in grain and purchased fodder inputs associated with the increases in stocking rate. Net pasture accumulation rates and pasture harvest were generally not altered with stocking rate, though as stocking rate increased there was a change to more of the pasture being grazed and less conserved in both dryland and irrigated farmlets. Total pasture harvest averaged similar to 8 and 14 t DM/ha.year for dryland and irrigated pastures, respectively. An exception was at the highest stocking rate under irrigation, where pugging during winter was associated with a 14% reduction in annual pasture growth. There were several indications that these high stocking rates may not be sustainable without substantial changes in management practice. There were large and positive nutrient balances and associated increases in soil mineral content (P < 0.01), especially for phosphorus and nitrate nitrogen, with both stocking rate and succeeding years. Levels under irrigation were considerably higher (up to 90 and 240 mg/kg of soil for nitrate nitrogen and phosphorus, respectively) than under dryland pastures (60 and 140 mg/kg, respectively). Soil organic carbon levels did not change with stocking rate, indicating a high level of utilisation of forage grown. Weed ingress was also high (to 22% DM) in all treatments and especially in heavily stocked irrigated pastures during winter. It was concluded the higher stocking rates used exceeded those that are feasible for Mediterranean pastures in this environment and upper levels of stocking are suggested to be 2.5 cows/ha for dryland pastures and 5.2 cows/ha for irrigated pastures. To sustain these suggested stocking rates will require further development of management practices to avoid large increases in soil minerals and weed invasion of pastures.
Resumo:
A 19-year data set, which highlights the rapid growth rate in basal area of trees in thinned plots compared with unthinned controls, is presented. These results support the contention that, following tree thinning, basal area of retained trees will increase more rapidly than that of trees on unthinned areas. Indications are that pre-thinning levels in tree basal area will again be reached before the cost of treatment can be recouped by increased pasture and livestock production.
Resumo:
A highly polymorphic genetic locus of Stout Whiting was examined for evidence of geographical subdivision amongst samples collected from three locales in southern Queensland waters. Statistical indicators of subdivision were not significantly different from zero, suggesting that it is unlikely that the Stout Whiting resource in southern Queensland is genetically subdivided into separate stocks. It is recommended that the full-scale genetic program not proceed and that the resource be managed as a single stock.
Resumo:
Coastal seagrass habitats in tropical and subtropical regions support aggregations of resident green turtles (Chelonia mydas) from several genetically distinct breeding populations. Migration of individuals to their respective dispersed breeding sites provides a complex pattern of migratory connectivity among nesting and feeding habitats of this species. An understanding of this pattern is important in regions where the persistence of populations is under threat from anthropogenic impacts. The present study uses mitochondrial DNA and mixed-stock analyses to assess the connectivity among seven feeding grounds across the north Australian coast and adjacent areas and 17 genetically distinct breeding populations from the Indo-Pacific region. It was hypothesised that large and geographically proximate breeding populations would dominate at nearby feeding grounds. As expected, each sampled feeding area appears to support multiple breeding populations, with two aggregations dominated by a local breeding population. Geographic distance between breeding and feeding habitat strongly influenced whether a breeding population contributed to a feeding ground (wi = 0.654); however, neither distance nor size of a breeding population was a good predictor of the extent of their contribution. The differential proportional contributions suggest the impact of anthropogenic mortality at feeding grounds should be assessed on a case-by-case basis.
Resumo:
Standardised time series of fishery catch rates require collations of fishing power data on vessel characteristics. Linear mixed models were used to quantify fishing power trends and study the effect of missing data encountered when relying on commercial logbooks. For this, Australian eastern king prawn (Melicertus plebejus) harvests were analysed with historical (from vessel surveys) and current (from commercial logbooks) vessel data. Between 1989 and 2010, fishing power increased up to 76%. To date, both forward-filling and, alternatively, omitting records with missing vessel information from commercial logbooks produce broadly similar fishing power increases and standardised catch rates, due to the strong influence of years with complete vessel data (16 out of 23 years of data). However, if gaps in vessel information had not originated randomly and skippers from the most efficient vessels were the most diligent at filling in logbooks, considerable errors would be introduced. Also, the buffering effect of complete years would be short lived as years with missing data accumulate. Given ongoing changes in fleet profile with high-catching vessels fishing proportionately more of the fleet’s effort, compliance with logbook completion, or alternatively ongoing vessel gear surveys, is required for generating accurate estimates of fishing power and standardised catch rates.
Resumo:
Concern over the amount of by-catch from benthic trawl fisheries and research into the problem have increased in recent years. The present paper demonstrated that by-catch rates in the Queensland (Australia) saucer scallop (Amusium balloti) trawl fishery can be reduced by 77% (by weight) using nets fitted with a turtle excluder device (TED) and a square-mesh codend, compared with a standard diamond-mesh codend with no TED. This large reduction was achieved with no significant effect on the legal size scallop catch rate and 39% fewer undersize scallops were caught. In total, 382 taxa were recorded in the by-catch, which was dominated by sponges, portunid crabs, small demersal and benthic fish (e.g. leatherjackets, stingerfish, bearded ghouls, nemipterids, longspine emperors, lizard fish, triggerfish, flounders and rabbitfish), elasmobranchs (e.g. mainly rays) and invertebrates (e.g. sea stars, sea urchins, sea cucumbers and bivalve molluscs). Extremely high reductions in catch rate (i.e. ≥85%) were demonstrated for several by-catch species owing to the square-mesh codend. Square-mesh codends show potential as a means of greatly reducing by-catch and lowering the incidental capture and mortality of undersize scallops and Moreton Bay bugs (Thenus australiensis) in this fishery
Resumo:
Movement rates of eastern king prawns, Melicertus plebejus (Hess), were estimated from historical and recent conventional tag-recapture information collected across eastern Australia. Data from three studies and 2,656 tag recaptures were used. Recaptured males and females both moved east–north-east in central Queensland and north–north-east in southern Queensland and New South Wales. Over a period of one year, the estimated transition matrix reflected the species strong northerly movement and the more complex longitudinal movement, showing a very high probability of eastern movement in central Queensland and almost negligible eastern or western movement in northern New South Wales. The high exchange probability between New South Wales and Queensland waters indicated that spatial assessment models with movement rates between state jurisdictions would improve the management of this single-unit stock.
Resumo:
Suitable long term species-specific catch rate and biological data are seldom available for large shark species, particularly where historical commercial logbook reporting has been poor. However, shark control programs can provide suitable data from gear that consistently fishes nearshore waters all year round. We present an analysis of the distribution of 4757 . Galeocerdo cuvier caught in surface nets and on drumlines across 9 of the 10 locations of the Queensland Shark Control Program (QSCP) between 1993 and 2010. Standardised catch rates showed a significant decline (p<. 0.0001) in southern Queensland locations for both gear types, which contrasts with studies at other locations where increases in tiger shark catch per unit effort (CPUE) have been reported. Significant temporal declines in the average size of tiger sharks occurred at four of the nine locations analysed (p<. 0.05), which may be indicative of fishing reducing abundance in these areas. Given the long term nature of shark control programs along the Australian east coast, effects on local abundance should have been evident many years ago, which suggests that factors other than the effects of shark control programs have also contributed to the decline. While reductions in catch rate are consistent with a decline in tiger shark abundance, this interpretation should be made with caution, as the inter-annual CPUE varies considerably at most locations. Nevertheless, the overall downward trend, particularly in southern Queensland, indicates that current fishing pressures on the species may be unsustainable. © 2012 Elsevier B.V.
Resumo:
Movement rates of eastern king prawns, Melicertus plebejus (Hess), were estimated from historical and recent conventional tag-recapture information collected across eastern Australia. Data from three studies and 2,656 tag recaptures were used. Recaptured males and females both moved east-north-east in central Queensland and north-north-east in southern Queensland and New South Wales. Over a period of one year, the estimated transition matrix reflected the species strong northerly movement and the more complex longitudinal movement, showing a very high probability of eastern movement in central Queensland and almost negligible eastern or western movement in northern New South Wales. The high exchange probability between New South Wales and Queensland waters indicated that spatial assessment models with movement rates between state jurisdictions would improve the management of this single-unit stock.
Resumo:
In current simulation packages for the management of extensive beef-cattle enterprises, the relationships for the key biological rates (namely conception and mortality) are quite rudimentary. To better estimate these relationships, cohort-level data covering 17 100 cow-years from six sites across northern Australia were collated and analysed. Further validation data, from 7200 cow-years, were then used to test these relationships. Analytical problems included incomplete and non-standardised data, considerable levels of correlation among the 'independent' variables, and the close similarity of alternate possible models. In addition to formal statistical analyses of these data, the theoretical equations for predicting mortality and conception rates in the current simulation models were reviewed, and then reparameterised and recalibrated where appropriate. The final models explained up to 80% of the variation in the data. These are now proposed as more accurate and useful models to be used in the prediction of biological rates in simulation studies for northern Australia. © The State of Queensland (through the Department of Agriculture, Fisheries and Forestry) 2012. © CSIRO.
Resumo:
Variation in the reaction of cereal cultivars to crown rot caused by Fusarium spp., in particular Fusarium pseudograminearum, was identified over 50 yrs ago, however the parameters and pathways of infection by F. pseudograminearum remain poorly understood. Seedlings of wheat, barley and oat genotypes that differ in susceptibility to crown rot were inoculated with a mixture of F. pseudograminearum isolates. Seedlings were harvested from 7 to 42 days after inoculation and expanded plant parts were rated for severity of visible disease symptoms. Individual leaf sheaths were placed onto nutrient media and fungal colonies emerging from the leaf sheathes were counted to estimate the degree of fungal spread within the host tissue. Significant differences in both the timing and the severity of disease symptoms were observed in the leaf sheath tissues of different host genotypes. Across all genotypes and plant parts examined, the development of visible symptoms closely correlated with the spread of the fungus into that tissue. The degree of infection of the coleoptile and sub-crown internode varied between genotypes, but was unrelated to the putative resistance of the host. In contrast leaf sheath tissues of the susceptible barley cv. Tallon and bread wheat cv. Puseas scored higher disease ratings and consistently showed faster, earlier spread of the fungus into younger tissues than infections of the oat cv. Cleanleaf or the wheat lines 2-49 and CPI 133814. While initial infections usually spread upwards from near the base of the first leaf sheath, the pathogen did not appear to invade younger leaf sheaths only from the base, but rather spread laterally across from older leaf sheaths into younger, subtended leaf sheaths, particularly as disease progressed. Early in the infection of each leaf sheath, disease symptoms in the partially resistant genotypes were less severe than in susceptible genotypes, however as infected leaf sheaths aged, differences between genotypes lessened as disease symptoms approached maximum values. Hence, while visual scoring of disease symptoms on leaf sheaths is a reliable comparative measure of the degree of fungal infection, differences between genotypes in the development of disease symptoms are more reliably assessed using the most recently expanded leaf sheaths.
Resumo:
Global cereal production will need to increase by 50% to 70% to feed a world population of about 9 billion by 2050. This intensification is forecast to occur mostly in subtropical regions, where warm and humid conditions can promote high N2O losses from cropped soils. To secure high crop production without exacerbating N2O emissions, new nitrogen (N) fertiliser management strategies are necessary. This one-year study evaluated the efficacy of a nitrification inhibitor (3,4-dimethylpyrazole phosphate—DMPP) and different N fertiliser rates to reduce N2O emissions in a wheat–maize rotation in subtropical Australia. Annual N2O emissions were monitored using a fully automated greenhouse gas measuring system. Four treatments were fertilized with different rates of urea, including a control (40 kg-N ha−1 year−1), a conventional N fertiliser rate adjusted on estimated residual soil N (120 kg-N ha−1 year−1), a conventional N fertiliser rate (240 kg-N ha−1 year−1) and a conventional N fertiliser rate (240 kg-N ha−1 year−1) with nitrification inhibitor (DMPP) applied at top dressing. The maize season was by far the main contributor to annual N2O emissions due to the high soil moisture and temperature conditions, as well as the elevated N rates applied. Annual N2O emissions in the four treatments amounted to 0.49, 0.84, 2.02 and 0.74 kg N2O–N ha−1 year−1, respectively, and corresponded to emission factors of 0.29%, 0.39%, 0.69% and 0.16% of total N applied. Halving the annual conventional N fertiliser rate in the adjusted N treatment led to N2O emissions comparable to the DMPP treatment but extensively penalised maize yield. The application of DMPP produced a significant reduction in N2O emissions only in the maize season. The use of DMPP with urea at the conventional N rate reduced annual N2O emissions by more than 60% but did not affect crop yields. The results of this study indicate that: (i) future strategies aimed at securing subtropical cereal production without increasing N2O emissions should focus on the fertilisation of the summer crop; (ii) adjusting conventional N fertiliser rates on estimated residual soil N is an effective practice to reduce N2O emissions but can lead to substantial yield losses if the residual soil N is not assessed correctly; (iii) the application of DMPP is a feasible strategy to reduce annual N2O emissions from sub-tropical wheat–maize rotations. However, at the N rates tested in this study DMPP urea did not increase crop yields, making it impossible to recoup extra costs associated with this fertiliser. The findings of this study will support farmers and policy makers to define effective fertilisation strategies to reduce N2O emissions from subtropical cereal cropping systems while maintaining high crop productivity. More research is needed to assess the use of DMPP urea in terms of reducing conventional N fertiliser rates and subsequently enable a decrease of fertilisation costs and a further abatement of fertiliser-induced N2O emissions.