88 resultados para Mechanical Resistance
Resumo:
Phosphine is the primary fumigant used to protect the majority of the world' s grain and a variety of other stored commodities from insect pests. Phosphine is playing an increasingly important role in the protection of commodities for two primary reasons. Firstly, use of the alternative fumigant, methyl bromide, has been sharply curtailed and is tightly regulated due to its role in ozone depletion, and secondly, consumers are becoming increasingly intolerant of contact pesticides. Niche alternatives to phosphine exist, but they suffer from a range of factors that limit their use, including: 1) Limited commercial adoption due to expense or slow mode of action; 2) Poor efficacy due to low toxicity, rapid sorption, limited volatility or high density; 3) Public health concerns due to toxicity to handlers or nearby residents, as well as risk of explosion; 4) Poor consumer acceptance due to toxic residues or smell. These same factors limit the prospects of quickly identifying and deploying a new fumigant. Given that resistance toward phosphine is increasing among insect pests, improved monitoring and management of resistance is a priority. Knowledge of the mode of action of phosphine as well as the mechanisms of resistance may also greatly reduce the effort and expense of identifying synergists or novel replacement compounds.
Resumo:
Phosphine, a widely used fumigant for the protection of stored grain from insect pests, kills organisms indirectly by inducing oxidative stress. High levels of heritable resistance to phosphine in the insect pest of stored grain, Rhyzopertha dominica have been detected in Asia, Australia and South America. In order to understand the evolution of phosphine resistance and to isolate the responsible genes, we have undertaken genetic linkage analysis of fully sensitive (QRD14), moderately resistant (QRD369) and highly resistant (QRD569) strains of R. dominica collected in Australia. We previously determined that two loci, rph1 and rph2, confer high-level resistance on strain QRD569, which was collected in 1997. We have now confirmed that rph1 is responsible for the moderate resistance of strain QRD369, which was collected in 1990, and is shared with a highly resistant strain from the same geographical region, QRD569. In contrast, rph2 by itself confers only very weak resistance, either as a heterozygote or as a homozygote and was not discovered in the field until weak resistance (probably due to rph1) had become ubiquitous. Thus, high-level resistance against phosphine has evolved via stepwise acquisition of resistance alleles, first at rph1 and thereafter at rph2. The semi-dominance of rph2 together with the synergistic interaction between rph1 and rph2 would have led to rapid selection for homozygosity. A lack of visible fitness cost associated with alleles at either locus suggests that the resistance phenotype will persist in the field.
Resumo:
BACKGROUND: Glyphosate-resistant cotton varieties are an important tool for weed control in Australian cotton production systems. To increase the sustainability of this technology and to minimise the likelihood of resistance evolving through its use, weed scientists, together with herbicide regulators, industry representatives and the technology owners, have developed a framework that guides the use of the technology. Central to this framework is a crop management plan (CMP) and grower accreditation course. A simulation model that takes into account the characteristics of the weed species, initial gene frequencies and any associated fitness penalties was developed to ensure that the CMP was sufficiently robust to minimise resistance risks. RESULTS: The simulations showed that, when a combination of weed control options was employed in addition to glyphosate, resistance did not evolve over the 30 year period of the simulation. CONCLUSION: These simulations underline the importance of maintaining an integrated system for weed management to prevent the evolution of glyphosate resistance, prolonging the use of glyphosate-resistant cotton.
Resumo:
Aphids can cause substantial damage to cereals, oilseeds and legumes through direct feeding and through the transmission of plant pathogenic viruses. Aphid-resistant varieties are only available for a limited number of crops. In Australia, growers often use prophylactic sprays to control aphids, but this strategy can lead to non-target effects and the development of insecticide resistance. Insecticide resistance is a problem in one aphid pest of Australian grains in Australia, the green peach aphid (Myzus persicae). Molecular analyses of field-collected samples demonstrate that amplified E4 esterase resistance to organophosphate insecticides is widespread in Australian grains across Australia. Knockdown resistance to pyrethroids is less abundant, but has an increased frequency in areas with known frequent use of these insecticides. Modified acetylcholinesterase resistance to dimethyl carbamates, such as pirimicarb, has not been found in Australia, nor has resistance to imidacloprid. Australian grain growers should consider control options that are less likely to promote insecticide resistance, and have reduced impacts on natural enemies. Research is ongoing in Australia and overseas to provide new strategies for aphid management in the future.
Resumo:
There are two major pests of sorghum in Australia, the sorghum midge, Stenodiplosis sorghicola (Coquillett), and the corn earworm, Helicoverpa armigera (Hübner). During the past 10 years the management of these pests has undergone a revolution, due principally to the development of sorghum hybrids with resistance to sorghum midge. Also contributing has been the adoption of a nucleopolyhedrovirus for the management of corn earworm. The practical application of these developments has led to a massive reduction in the use of synthetic insecticides for the management of major pests of sorghum in Australia. These changes have produced immediate economic, environmental and social benefits. Other flow-on benefits include providing flexibility in planting times, the maintenance of beneficial arthropods and utilisation of sorghum as a beneficial arthropod nursery, a reduction in midge populations and a reduction in insecticide resistance development in corn earworm. Future developments in sorghum pest management are discussed.
Resumo:
An integrated pest management (IPM) approach that relies on an array of tactics is adopted commonly in response to problems with pesticide-based production in many agricultural systems. Host plant resistance is often used as a fundamental component of an IPM system because of the generally compatible, complementary role that pest-resistant crops play with other tactics. Recent research and development in the resistance of legumes and cereals to aphids, sorghum midge resistance, and the resistance of canola varieties to mite and insect pests have shown the prospects of host plant resistance for developing IPM strategies against invertebrate pests in Australian grain crops. Furthermore, continuing advances in biotechnology provide the opportunity of using transgenic plants to enhance host plant resistance in grains.
Resumo:
We have tested the efficacy of putative microsatellite single sequence repeat (SSR) markers, previously identified in a 2-49 (Gluyas Early/Gala) × Janz doubled haploid wheat (Triticum aestivum) population, as being linked to partial seedling resistance to crown rot disease caused by Fusarium pseudograminearum. The quantitative trait loci (QTLs) delineated by these markers have been tested for linkage to resistance in an independent Gluyas Early × Janz doubled haploid population. The presence of a major QTL on chromosome 1DL (QCr.usq-1D1) and a minor QTL on chromosome 2BS (QCr.usq-2B1) was confirmed. However, a putative minor QTL on chromosome 2A was not confirmed. The QTL on 1D was inherited from Gluyas Early, a direct parent of 2-49, whereas the 2B QTL was inherited from Janz. Three other putative QTLs identified in 2-49 × Janz (on 1AL, 4BL, and 7BS) were inherited by 2-49 from Gala and were not able to be confirmed in this study. The screening of SSR markers on a small sample of elite wheat genotypes indicated that not all of the most tightly linked SSR markers flanking the major QTLs on 1D and 1A were polymorphic in all backgrounds, indicating the need for additional flanking markers when backcrossing into some elite pedigrees. Comparison of SSR haplotypes with those of other genotypes exhibiting partial crown rot resistance suggests that additional, novel sources of crown rot resistance are available.
Resumo:
Most plant disease resistance (R) genes encode proteins with a nucleotide binding site and leucine-rich repeat structure (NBS-LRR). In this study, degenerate primers were used to amplify genomic NBS-type sequences from wild banana (Musa acuminata ssp. malaccensis) plants resistant to the fungal pathogen Fusarium oxysporum formae specialis (f. sp.) cubense (FOC) race 4. Five different classes of NBS-type sequences were identified and designated as resistance gene candidates (RGCs). The deduced amino acid sequences of the RGCs revealed the presence of motifs characteristic of the majority of known plant NBS-LRR resistance genes. Structural and phylogenetic analyses grouped the banana RGCs within the non-TIR (homology to Toll/interleukin-1 receptors) subclass of NBS sequences. Southern hybridization showed that each banana RGC is present in low copy number. The expression of the RGCs was assessed by RT-PCR in leaf and root tissues of plants resistant or susceptible to FOC race 4. RGC1, 3 and 5 showed a constitutive expression profile in both resistant and susceptible plants whereas no expression was detected for RGC4. Interestingly, RGC2 expression was found to be associated only to FOC race 4 resistant lines. This finding could assist in the identification of a FOC race 4 resistance gene.
Resumo:
Using an established genetic map, a single gene conditioning covered smut resistance, Ruh.7H, was mapped to the telomere region of chromosome 7HS in an Alexis/Sloop doubled haploid barley population. The closest marker to Ruh.7H, abg704 was 7.5 cM away. Thirteen loci on the distal end of 7HS with potential to contain single nucleotide polymorphisms (SNPs) were identified by applying a comparative genomics approach using rice sequence data. Of these, one locus produced polymorphic co-dominant bands of different size while two further loci contained SNPs that were identified using the recently developed high resolution melting (HRM) technique. Two of these markers flanked Ruh.7H with the proximal marker located 3.8 cM and the distal marker 2.7 cM away. This is the first report on the application of the HRM technique to SNP detection and to rapid scoring of known cleaved amplified polymorphic sequence (CAPS) markers in plants. This simple, precise post-PCR technique should find widespread use in the fine-mapping of genetic regions of interest in complex cereal and other plant genomes.
Resumo:
Mature green mango fruits of commercially important varieties were screened to investigate the levels of constitutive antifungal compounds in peel and to assess anthracnose disease after inoculation with Colletotrichum gloeosporioides. High pressure liquid chromatography was used to quantify the levels of 5-n-heptadecenylresorcinol and 5-n-pentadecylresorcinol in the peel extracts. The fruit peel of the varieties ‘Kensington Pride’ and ‘Keitt’ were observed to have the highest levels of both 5-n-heptadecenylresorcinol (107.3-123.7 and 49.9-61.4 μg/g FW, respectively) and 5-n-pentadecylresorcinol (6.32-7.99 and 3.30-6.05 μg/g FW, respectively), and the fruit of the two varieties were found to have some resistance to postharvest anthracnose. The varieties ‘Kent’, ‘R2E2’, ‘Nam Doc Mai’, ‘Calypso’, and ‘Honey Gold’ contained much lower concentrations of resorcinols in their peel and three of these varieties were found to be more susceptible to anthracnose. Concentrations of 5-nheptadecenylresorcinol were significantly lower at the ‘sprung’ and ‘eating ripe’ stages of ripening compared to levels at harvest. Concentrations of 5-n-pentadecylresorcinol did not differ significantly across the three stages of ripening. The levels of these two resorcinols were found to be strongly inter-correlated (P < 0.001, r2 = 0.71), with concentrations of 5-nheptadecenylresorcinol being an average 18 times higher than those of 5-npentadecylresorcinol. At the ‘eating ripe’ stage, significant relationships were observed between the concentrations of each type of alk(en)ylresorcinol and anthracnose lesion areas following postharvest inoculation, P<0.001, r2= 0.69 for 5-n pentadecylresorcinol, and P<0.001, r2= 0.44 for 5-n-heptadecenylresorcinol.
Resumo:
In 2002 at Virginia, South Australia, capsicum cultivars having the Tsw resistance gene against Tomato spotted wilt virus (TSWV) developed symptoms typical of TSWV infection and several glasshouse-grown crops were almost 100% infected. Samples reacted with TSWV antibodies in ELISA. Virus isolates from infected plants induced severe systemic symptoms, rather than a hypersensitive reaction, when inoculated onto capsicum cultivars and Capsicum chinense genotypes ( PI 152225 and PI 159236) that carry the Tsw resistance gene. Isolates virulent towards the Tsw gene had molecular and biological properties very similar to standard TSWV isolates, including a hypersensitive reaction in Sw-5 (TSWV-resistant) tomato genotypes. Tsw-virulent isolates were found during surveys at Virginia in 2002 and 2004 in both TSWV-resistant and susceptible cultivars of capsicum and tomato.
Resumo:
Root-lesion nematode (Pratylenchus thornei) is a serious pathogen of wheat in many countries. The International Triticeae Mapping Initiative (ITMI) population of recombinant inbred lines (RILs) was assessed for resistance to P. thornei to determine the chromosome locations of the resistance genes. The ITMI population is derived from a cross between the resistant synthetic hexaploid wheat W-7984 and a susceptible bread wheat cultivar Opata 85. Two years of phenotypic data for resistance to P. thornei were obtained in replicated glasshouse trials. Quantitative trait locus (QTL) analysis was performed using available segregation and map data for 114 RILs. A QTL on chromosome 6DS showed consistent effects for reduced nematode numbers (partial resistance) across years and accounted for 11% and 23% of the phenotypic variation. A second QTL for P. thornei resistance on chromosome 2BS accounted for an additional 19% and 5%. Restriction fragment length polymorphism (RFLP) and simple sequence repeat (SSR) markers associated with the QTLs are physically located in regions rich in major genes at the distal ends of the short chromosome arms of 6D and 2B. SSR markers with potential for marker-assisted selection of P. thornei resistance effective in different genetic backgrounds have been identified.
Resumo:
Low-volume, backline applications with the benzoylphenyl urea insecticides triflumuron and diflubenzuron represent in excess of 70% of treatments for the control of sheep lice, Bovicola ovis (Schrank) (Phthiraptera: Trichodectidae), in Australia. Reports of reduced effectiveness from 2003 and subsequent controlled treatment trials suggested the emergence of resistance to these compounds in B. ovis populations. A laboratory assay based on the measurement of moulting success in nymphs was developed and used to assess susceptibility to diflubenzuron and triflumuron in louse populations collected from sheep where a control failure had occurred. These tests confirmed the development of resistance to triflumuron and diflubenzuron in at least two instances, with estimated resistance ratios of 67-94X at LC50.
Resumo:
Sequestration of parasite-infected red blood cells (RBCs) in the microvasculature is an important pathological feature of both bovine babesiosis caused by Babesia bovis and human malaria caused by Plasmodium falciparum. Surprisingly, when compared with malaria, the cellular and molecular mechanisms that underlie this abnormal circulatory behaviour for RBCs infected with B. bovis have been relatively ignored. Here, we present some novel insights into the adhesive and mechanical changes that occur in B. bovis-infected bovine RBCs and compare them with the alterations that occur in human RBCs infected with P. falciparum. After infection with B. bovis, bovine RBCs become rigid and adhere to vascular endothelial cells under conditions of physiologically relevant flow. These alterations are accompanied by the appearance of ridge-like structures on the RBC surface that are analogous, but morphologically and biochemically different, to the knob-like structures on the surface of human RBCs infected with P. falciparum. Importantly, albeit for a limited number of parasite lines examined here, the extent of these cellular and rheological changes appear to be related to parasite virulence. Future investigations to identify the precise molecular composition of ridges and the proteins that mediate adhesion will provide important insight into the pathogenesis of both babesiosis and malaria.
Resumo:
As failure to control Rhyzopertha dominica (F.) with phosphine is a common problem in the grain-growing regions of Brazil, a study was undertaken to investigate the frequency, distribution and strength of phosphine resistance in R. dominica in Brazil. Nineteen samples of R. dominica were collected between 1991 and 2003 from central storages where phosphine fumigation had failed to control this species. Insects were cultured without selection until testing in 2005. Each sample was tested for resistance to phosphine on the basis of the response of adults to discriminating concentrations of phosphine (20 and 48 h exposures) and full dose-response assays (48 h exposure). Responses of the Brazilian R. dominica samples were compared with reference susceptible, weak-resistance and strong-resistance strains from Australia in parallel assays. All Brazilian population samples showed resistance to phosphine: five were diagnosed with weak resistance and 14 with strong resistance. Five samples showed levels of resistance similar to the reference strong-resistance strain. A representative highly resistant sample was characterised by exposing mixed-age cultures to a range of constant concentrations of phosphine for various exposure periods. Time to population extinction (TPE) and time to 99.9% suppression of population (LT99.9) values of this sample were generally similar to those of the reference strong-resistance strain. For example, at 0.1, 0.5 and 1.0 mg L-1, LT99.9 values for BR33 and the reference strong-resistance strain were respectively 21, 6.4 and 3.7 days and 17, 6.2 and 3.8 days. With both strains, doubling phosphine concentrations to 2 mg L -1 resulted in increased LT99.9 and TPE. High level and frequency of resistance in all population samples, some of which had been cultured without selection for up to 12 years, suggest little or no fitness deficit associated with phosphine resistance. The present research indicates that widespread phosphine resistance may be developing in Brazil. Fumigation practices should be monitored and resistance management plans implemented to alleviate further resistance development.