22 resultados para Management science.
Resumo:
BACKGROUND: The lesser grain borer, Rhyzopertha dominica (F.), is a highly destructive pest of stored grain that is strongly resistant to the fumigant phosphine (PH3). Phosphine resistance is due to genetic variants at the rph2 locus that alter the function of the dihydrolipoamide dehydrogenase (DLD) gene. This discovery now enables direct detection of resistance variants at the rph2 locus in field populations. RESULTS: A genotype assay was developed for direct detection of changes in distribution and frequency of a phosphine resistance allele in field populations of R. dominica. Beetles were collected from ten farms in south-east Queensland in 2006 and resampled in 2011. Resistance allele frequency increased in the period from 2006 to 2011 on organic farms with no history of phosphine use, implying that migration of phosphine-resistant R. dominica had occurred from nearby storages. CONCLUSION: Increasing resistance allele frequencies on organic farms suggest local movement of beetles and dispersal of insects from areas where phosphine has been used. This research also highlighted for the first time the utility of a genetic DNA marker in accurate and rapid determination of the distribution of phosphine-resistant insects in the grain value chain. Extending this research over larger landscapes would help in identifying resistance problems and enable timely pest management decisions. © 2013 Society of Chemical Industry © 2013 Society of Chemical Industry 69 6 June 2013 10.1002/ps.3514 Rapid Report Rapid Report © 2013 Society of Chemical Industry.
Resumo:
BACKGROUND Control of pests in stored grain and the evolution of resistance to pesticides are serious problems worldwide. A stochastic individual-based two-locus model was used to investigate the impact of two important issues, the consistency of pesticide dosage through the storage facility and the immigration rate of the adult pest, on overall population control and avoidance of evolution of resistance to the fumigant phosphine in an important pest of stored grain, the lesser grain borer. RESULTS A very consistent dosage maintained good control for all immigration rates, while an inconsistent dosage failed to maintain control in all cases. At intermediate dosage consistency, immigration rate became a critical factor in whether control was maintained or resistance emerged. CONCLUSION Achieving a consistent fumigant dosage is a key factor in avoiding evolution of resistance to phosphine and maintaining control of populations of stored-grain pests; when the dosage achieved is very inconsistent, there is likely to be a problem regardless of immigration rate. © 2012 Society of Chemical Industry
Resumo:
BACKGROUND: The recent development of very high resistance to phosphine in rusty grain beetle, Cryptolestes ferrugineus (Stephens), seriously threatens stored-grain biosecurity. The aim was to characterise this resistance, to develop a rapid bioassay for its diagnosis to support pest management and to document the distribution of resistance in Australia in 20072011. RESULTS: Bioassays of purified laboratory reference strains and field-collected samples revealed three phenotypes: susceptible, weakly resistant and strongly resistant. With resistance factors of > 1000 x , resistance to phosphine expressed by the strong resistance phenotype was higher than reported for any stored-product insect species. The new time-to-knockdown assay rapidly and accurately diagnosed each resistance phenotype within 6 h. Although less frequent in western Australia, weak resistance was detected throughout all grain production regions. Strong resistance occurred predominantly in central storages in eastern Australia. CONCLUSION: Resistance to phosphine in the rusty grain beetle is expressed through two identifiable phenotypes: weak and strong. Strong resistance requires urgent changes to current fumigation dosages. The development of a rapid assay for diagnosis of resistance enables the provision of same-day advice to expedite resistance management decisions. (c) 2012 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.
Resumo:
Computer simulation modelling is an essential aid in building an integrated understanding of how different factors interact to affect the evolutionary and population dynamics of herbicide resistance, and thus in helping to predict and manage how agricultural systems will be affected. In this review, we first discuss why computer simulation modelling is such an important tool and framework for dealing with herbicide resistance. We then explain what questions related to herbicide resistance have been addressed to date using simulation modelling, and discuss the modelling approaches that have been used, focusing first on the earlier, more general approaches, and then on some newer, more innovative approaches. We then consider how these approaches could be further developed in the future, by drawing on modelling techniques that are already employed in other areas, such as individual-based and spatially explicit modelling approaches, as well as the possibility of better representing genetics, competition and economics, and finally the questions and issues of importance to herbicide resistance research and management that could be addressed using these new approaches are discussed. We conclude that it is necessary to proceed with caution when increasing the complexity of models by adding new details, but, with appropriate care, more detailed models will make it possible to integrate more current knowledge in order better to understand, predict and ultimately manage the evolution of herbicide resistance. © 2014 Society of Chemical Industry.
Resumo:
BACKGROUND The emergence of high levels of resistance in Cryptolestes ferrugineus (Stephens) in recent years threatens the sustainability of phosphine, a key fumigant used worldwide to disinfest stored grain. We aimed at developing robust fumigation protocols that could be used in a range of practical situations to control this resistant pest. RESULTS Values of the lethal time to kill 99.9% (LT99.9, in days) of mixed-age populations, containing all life stages, of a susceptible and a strongly resistant C. ferrugineus population were established at three phosphine concentrations (1.0, 1.5 and 2.0 mg L−1) and three temperatures (25, 30 and 35 °C). Multiple linear regression analysis revealed that phosphine concentration and temperature both contributed significantly to the LT99.9 of a population (P < 0.003, R2 = 0.92), with concentration being the dominant variable, accounting for 75.9% of the variation. Across all concentrations, LT99.9 of the strongly resistant C. ferrugineus population was longest at the lowest temperature and shortest at the highest temperature. For example, 1.0 mg L−1 of phosphine is required for 20, 15 and 15 days, 1.5 mg L−1 for 12, 11 and 9 days and 2.0 mg L−1 for 10, 7 and 6 days at 25, 30 and 35 °C, respectively, to achieve 99.9% mortality of the strongly resistant C. ferrugineus population. We also observed that phosphine concentration is inversely proportional to fumigation period in regard to the population extinction of this pest. CONCLUSION The fumigation protocols developed in this study will be used in recommending changes to the currently registered rates of phosphine in Australia towards management of strongly resistant C. ferrugineus populations, and can be repeated in any country where this type of resistance appears.
Resumo:
BACKGROUND The emergence of high levels of resistance in Cryptolestes ferrugineus (Stephens) in recent years threatens the sustainability of phosphine, a key fumigant used worldwide to disinfest stored grain. We aimed at developing robust fumigation protocols that could be used in a range of practical situations to control this resistant pest. RESULTS Values of the lethal time to kill 99.9% (LT99.9, in days) of mixed-age populations, containing all life stages, of a susceptible and a strongly resistant C. ferrugineus population were established at three phosphine concentrations (1.0, 1.5 and 2.0 mg L−1) and three temperatures (25, 30 and 35 °C). Multiple linear regression analysis revealed that phosphine concentration and temperature both contributed significantly to the LT99.9 of a population (P < 0.003, R2 = 0.92), with concentration being the dominant variable, accounting for 75.9% of the variation. Across all concentrations, LT99.9 of the strongly resistant C. ferrugineus population was longest at the lowest temperature and shortest at the highest temperature. For example, 1.0 mg L−1 of phosphine is required for 20, 15 and 15 days, 1.5 mg L−1 for 12, 11 and 9 days and 2.0 mg L−1 for 10, 7 and 6 days at 25, 30 and 35 °C, respectively, to achieve 99.9% mortality of the strongly resistant C. ferrugineus population. We also observed that phosphine concentration is inversely proportional to fumigation period in regard to the population extinction of this pest. CONCLUSION The fumigation protocols developed in this study will be used in recommending changes to the currently registered rates of phosphine in Australia towards management of strongly resistant C. ferrugineus populations, and can be repeated in any country where this type of resistance appears. © 2014 Commonwealth of Australia. Pest Management Science © 2014 Society of Chemical Industry
Resumo:
BACKGROUND Our aim was to ascertain the potential of sulfuryl fluoride (SF) as an alternative fumigant to manage phosphine-resistant pests. We tested the susceptibility of all life stages of red flour beetle, Tribolium castaneum (Herbst), to SF and assessed the presence of cross-resistance to this fumigant in phosphine-resistant strains of this species. RESULTS Analysis of dose–response data indicated that the egg was the stage most tolerant to SF under a 48 h exposure period. At LC50, eggs were 29 times more tolerant than other immature stages and adults, and required a relatively high concentration of 48.2 mg L−1 for complete mortality. No significant differences in tolerance to SF were observed among the three larval instars, pupae and adults, and all of these stages were controlled at a low concentration of 1.32 mg L−1. Phosphine-resistant strains did not show cross-resistance to SF. CONCLUSION Our research concluded that the current maximum registered rate of SF, 1500 gh m−3, is adequate to control all the post-embryonic life stages of T. castaneum over a 48 h fumigation period, but it will fail to achieve complete mortality of eggs, indicating the risk of some survival of eggs under this short exposure period. As there is no cross-resistance to SF in phosphine-resistant insects, it will play a key role in managing phosphine resistance in stored-grain insect pests. © 2014 Commonwealth of Australia. Pest Management Science © 2014 Society of Chemical Industry