18 resultados para MILL EFFLUENTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This manual is a guide to establishing a set of operations to achieve high grade results in product quality and recovery, flexibility, innovation, cost, and competitiveness. The manual outlines: - economic and feasible technologies for increasing recovery and reducing avoidable loss during processing, from the log to the finished board, and - mechanisms that allow production value to be optimised in different sized mills. Part 1 covers sections 1 to 7: Drying overview and strategy, coupe, log yard, green mill, green pack, bioprotection, rack timber. Part 2 Link: http://era.deedi.qld.gov.au/3137 Includes sections 8 to 17: Air drying, pre-drying, reconditioning, controlled final drying, dry milling, storage, information assessment, drying quality assessment, moisture content monitoring, glossary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One major benefit of land application of biosolids is to supply nitrogen (N) for agricultural crops, and understanding mineralisation processes is the key for better N-management strategies. Field studies were conducted to investigate the process of mineralisation of three biosolids products (aerobic, anaerobic, and thermally dried biosolids) incorporated into four different soils at rates of 7-90 wet t/ha in subtropical Queensland. Two of these studies also examined mineralisation rates of commonly used organic amendments (composts, manures, and sugarcane mill muds). Organic N in all biosolids products mineralised very rapidly under ambient conditions in subtropical Queensland, with rates much faster than from other common amendments. Biosolids mineralisation rates ranged from 30 to 80% of applied N during periods ranging from 3.5 to 18 months after biosolids application; these rates were much higher than those suggested in the biosolids land application guidelines established by the NSW EPA (15% for anaerobic and 25% for aerobic biosolids). There was no consistently significant difference in mineralisation rate between aerobic and anaerobic biosolids in our studies. When applied at similar rates of N addition, other organic amendments supplied much less N to the soil mineral N and plant N pools during the crop season. A significant proportion of the applied biosolids total N (up to 60%) was unaccounted for at the end of the observation period. High rates of N addition in calculated Nitrogen Limited Biosolids Application Rates (850-1250 kg N/ha) resulted in excessive accumulation of mineral N in the soil profile, which increases the environmental risks due to leaching, runoff, or gaseous N losses. Moreover, the rapid mineralisation of the biosolids organic N in these subtropical environments suggests that biosolids should be applied at lower rates than in temperate areas, and that care must be taken with the timing to maximise plant uptake and minimise possible leaching, runoff, or denitrification losses of mineralised N.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genus name Limnocharis is derived from the Greek limno (meaning marsh or pond) and charis (meaning grace) (Haynes and Holm-Nielson 1992) and flava is Latin for yellow. The genus is generally accepted to have two species, Limnocharis flava (Linneaus) Buchenau 1868 and L. laforestii (Duchass. ex Griseb) 1858. L. flava was first named Alisma flava by Linneaus in 1753 (Haynes and Holm-Nielsen 1986). Since then, other synonyms have included Damasonium flavum Mill. 1772, Limnocharis emarginata Humb. and Bonpl. 1808, Limnocharis plumieri Rich. 1815, Limnocharis laforestii Duchas. ex Griseb (1858) and Limnocharis mattogrossensis O. Ktze. (1893) (Woodson and Schery 1943).