19 resultados para Life cycle assessment


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mikania micrantha Kunth (Asteraceae), commonly known as ‘mile-a-minute’, is a neotropical plant species now found in 17 Pacific island countries and territories, invading small cropping areas and plantations, thereby reducing productivity and food security. In 2006, a biocontrol project on M. micrantha commenced in Fiji and Papua New Guinea (PNG). The distribution of M. micrantha as well as baseline data such as plant growth rates and socio-economic impacts were determined before the importation of any biocontrol agents. Mikania micrantha was recorded in all 15 lowland provinces in PNG and on all major islands in Fiji. Plants grow about 3.2cm/day in PNG and about 1.9cm/day in Fiji. A socio-economic survey, involving over 370 respondents in over 220 villages from 15 provinces in PNG, found that 78% of respondents considered M. micrantha a serious weed and about 44% had M. micrantha, which they needed to weed at least fortnightly, in over a third of their land. Over 80% of respondents used slashing and/or handpulling as the preferred method of weed control. About 40% of respondents considered that M. micrantha reduced crop yield by more than 30%. In Fiji, 52 respondents from four islands participated in the survey. Over 60% of respondents in Fiji considered M. micrantha a serious weed and 23% had about 30% of their farm lands infested with the weed. Only 15% of respondents needed to weed at least fortnightly, with 56% using slashing and/or hand-pulling as the preferred means of control. Over 65% of respondents estimated that they lost at least 30% of potential crop yield to M. micrantha. Nearly 90% of respondents used M. micrantha as a medicinal plant to treat cuts and wounds. The life history of the rust Puccinia spegazzinii de Toni (Pucciniales: Pucciniaceae), originating from Ecuador, and imported into PNG and Fiji in 2008, was studied. P. spegazzinii is a microcyclic and autoecious rust and has a life cycle of 18-22 days. An efficient culturing and field release method was developed. Since 2008, the rust has been released at over 450 sites in 15 provinces in PNG, establishing at nearly 70 sites in four provinces. From some sites, the rust has spread over 7 km in 12 months. In Fiji, the rust has been released at over 80 sites, on four of the main islands, namely Viti Levu, Vanua Levu, Taveuni and Ovalau, and has established at 20 sites on Viti Levu and Vanua Levu. Plant growth studies and field monitoring in PNG showed that P. spegazzinii can significantly reduce the growth and density of M. micrantha and offers great potential for the control of this weed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rhipicephalus micro plus is an important bovine ectoparasite, widely distributed in tropical and subtropical regions of the world causing large economic losses to the cattle industry. Its success as an ectoparasite is associated with its capacity to disarm the antihemostatic and anti-inflammatory reactions of the host. Serpins are protease inhibitors with an important role in the modulation of host-parasite interactions. The cDNA that encodes for a R. microplus serpin was isolated by RACE and subsequently cloned into the pPICZ alpha A vector. Sequence analysis of the cDNA and predicted amino acid showed that this cDNA has a conserved serpin domain. B- and T-cell epitopes were predicted using bioinformatics tools. The recombinant R. microplus serpin (rRMS-3) was secreted into the culture media of Pichia pastoris after methanol induction at 0.2 mg l(-1) qRT-PCR expression analysis of tissues and life cycle stages demonstrated that RMS-3 was mainly expressed in the salivary glands of female adult ticks. Immunological recognition of the rRMS-3 and predicted B-cell epitopes was tested using tick-resistant and susceptible cattle sera. Only sera from tick-resistant bovines recognized the B-cell epitope AHYNPPPPIEFT (Seq7). The recombinant RMS-3 was expressed in P. pastoris, and ELISA screening also showed higher recognition by tick-resistant bovine sera. The results obtained suggest that RMS-3 is highly and specifically secreted into the bite site of R. microplus feeding on tick-resistant bovines. Capillary feeding of semi-engorged ticks with anti-AHYNPPPPIEFT sheep sera led to an 81.16% reduction in the reproduction capacity of R. microplus. Therefore, it is possible to conclude that R. microplus serpin (RMS-3) has an important role in the host-parasite interaction to overcome the immune responses in resistant cattle. (C) 2012 Elsevier GmbH. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diseases caused by Tobacco streak virus (TSV) have resulted in significant crop losses in sunflower and mung bean crops in Australia. Two genetically distinct strains from central Queensland, TSV-parthenium and TSV-crownbeard, have been previously described. They share only 81% total-genome nucleotide sequence identity and have distinct major alternative hosts, Parthenium hysterophorus (parthenium) and Verbesina encelioides (crownbeard). We developed and used strain-specific multiplex Polymerase chain reactions (PCRs) for the three RNA segments of TSV-parthenium and TSV-crownbeard to accurately characterise the strains naturally infecting 41 hosts species. Hosts included species from 11 plant families, including 12 species endemic to Australia. Results from field surveys and inoculation tests indicate that parthenium is a poor host of TSV-crownbeard. By contrast, crownbeard was both a natural host of, and experimentally infected by TSV-parthenium but this infection combination resulted in non-viable seed. These differences appear to be an effective biological barrier that largely restricts these two TSV strains to their respective major alternative hosts. TSV-crownbeard was seed transmitted from naturally infected crownbeard at a rate of between 5% and 50% and was closely associated with the geographical distribution of crownbeard in central Queensland. TSV-parthenium and TSV-crownbeard were also seed transmitted in experimentally infected ageratum (Ageratum houstonianum) at rates of up to 40% and 27%, respectively. The related subgroup 1 ilarvirus, Ageratum latent virus, was also seed transmitted at a rate of 18% in ageratum which is its major alternative host. Thrips species Frankliniella schultzei and Microcephalothrips abdominalis were commonly found in flowers of TSV-affected crops and nearby weed hosts. Both species readily transmitted TSV-parthenium and TSV-crownbeard. The results are discussed in terms of how two genetically and biologically distinct TSV strains have similar life cycle strategies in the same environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The minute two-spotted ladybeetle, Diomus notescens Blackburn is a common predator of aphids and other pests in Australian agricultural crops, however little is known about the biology of D. notescens. The aim of this study was to provide information on the life cycle of this predator and improve our understanding of its biological control potential, particularly against one of the major pests of cotton, Aphis gossypii Glover. In laboratory experiments, juvenile development, prey consumption, as well as adult lifespan and fecundity were studied. Results from this study revealed that D. notescens could successfully complete development on A. gossypii, which at 25 °C required 21 days and during this period they each consume 129 ± 5.2 aphids. At 25 °C adult lifespan was 77 ± 9.6 days, with a mean daily prey consumption of 28 ± 1.8 aphids and a mean daily fecundity of 8 ± 0.5 eggs. Net reproductive rate was estimated as 187 ± 25.1 females and the intrinsic rate of increase was estimated as 0.14. Juvenile development was recorded at four constant temperatures (15, 21, 26 and 27 °C) and using a linear model, the lower threshold for D. notescens development was estimated to be 10 ± 0.6 °C with 285 ± 4.7 degree days required to complete development. A prey choice experiment studying predation rates revealed a strong preference for A. gossypii nymphs compared to Bemisia tabaci Gennadius eggs.