39 resultados para Lacerta bilineata, Hibernation, Thermoregulation, space utilisation, conservation
Resumo:
1. The conservation status of the dingo Canis familiaris dingo is threatened by hybridization with the domestic dog C. familiaris familiaris. A practical method that can estimate the different levels of hybridization in the field is urgently required so that animals below a specific threshold of dingo ancestry (e.g. 1/4 or 1/2 dingoes) can reliably be identified and removed from dingo populations. 2. Skull morphology has been traditionally used to assess dingo purity, but this method does not discriminate between the different levels of dingo ancestry in hybrids. Furthermore, measurements can only be reliably taken from the skulls of dead animals. 3. Methods based on the analysis of variation in DNA are able to discriminate between the different levels of hybridization, but the validity of this method has been questioned because the materials currently used as a reference for dingoes are from captive animals of unproven genetic purity. The use of pre-European materials would improve the accuracy of this method, but suitable material has not been found in sufficient quantity to develop a reliable reference population. Furthermore, current methods based on DNA are impractical for the field-based discrimination of hybrids because samples require laboratory analysis. 4. Coat colour has also been used to estimate the extent of hybridization and is possibly the most practical method to apply in the field. However, this method may not be as powerful as genetic or morphological analyses because some hybrids (e.g. Australian cattle dog × dingo) are similar to dingoes in coat colour and body form. This problem may be alleviated by using additional visual characteristics such as the presence/absence of ticking and white markings.
Resumo:
A small population of tall slender conifers was discovered in 1994 in a deep rainforest canyon of the Wollemi National Park, New SouthWales, Australia. The living trees closely resembled fossils that were more than 65 million years old, and this ‘living fossil’ was recognised as a third extant genus in the Araucariaceae (Araucaria, Agathis and now Wollemia). The species was named the Wollemi pine (W. nobilis). Extensive searches uncovered very few populations, with the total number of adult trees being less than 100. Ex situ collections were quickly established in Sydney as part of the Wollemi Pine Recovery Plan. The majority of the ex situ population was later transferred to our custom-built facility in Queensland for commercial multiplication. Domestication has relied very heavily on the species’ amenability to vegetative propagation because seed collection from the natural populations is dangerous, expensive, and undesirable for conservation reasons. Early propagation success was poor, with only about 25% of cuttings producing roots. However, small increases in propagation success have a very large impact on a domestication program because plant production can be modelled on an exponential curve where each rooted cutting develops into a mother plant that, in turn, provides more rooted cuttings. An extensive research program elevated rooting percentages to greater than 80% and also provided in vitro methods for plant multiplication. These successes have enabled international release of the Wollemi pine as a new and attractive species for ornamental horticulture.
Resumo:
Cucurbit crops host a range of serious sap-sucking insect pests, including silverleaf whitefly (SLW) and aphids, which potentially represent considerable risk to the Australian horticulture industry. These pests are extremely polyphagous with a wide host range. Chemical control is made difficult due to resistance and pollution, and other side-effects are associated with insecticide use. Consequently, there is much interest in maximising the role of biological control in the management of these sap-sucking insect pests. This study aimed to evaluate companion cropping alongside cucurbit crops in a tropical setting as a means to increase the populations of beneficial insects and spiders so as to control the major sap-sucking insect pests. The Population of beneficial and harmful insects, with a focus on SLW and aphids, and other invertebrates were sampled weekly oil four different crops which could be used for habitat manipulation: Goodbug Mix (GBM; a proprietary seed Mixture including self-sowing annual and perennial herbaceous flower species); lablab (Lablab purpureus L. Sweet); lucerne (Medicago sativa L.); and niger (Guizotia abyssinica (L.f.) Cass.). Lablab hosted the highest numbers of beneficial insects (larvae and adults of lacewing (Mallada signata (Schneider)), ladybird beetles (Coccinella transversalis Fabricius) and spiders) while GBM hosted the highest numbers of European bees (Apis mellifera Linnaeus) and spiders. Lucerne and niger showed little promise in hosting beneficial insects, but lucerne hosted significantly more spiders (double the numbers) than niger. Lucerne hosted significantly more of the harmful insect species of aphids (Aphis gossypii (Glover)) and Myzus persicae (Sulzer)) and heliothis (Heliothis armigera Hubner). Niger hosted significantly more vegetable weevils (Listroderes difficillis (Germar)) than the other three species. Therefore, lablab and GBM appear to be viable options to grow within cucurbits or as field boundary crops to attract and increase beneficial insects and spiders for the control of sap-sucking insect pests. Use of these bio-control strategies affords the opportunity to minimise pesticide usage and the risks associated with pollution.
Resumo:
Soft-leaf buffalo grass is increasing in popularity as an amenity turfgrass in Australia. This project was instigated to assess the adaptation of and establish management guidelines for its use in Australias vast array of growing environments. There is an extensive selection of soft-leaf buffalo grass cultivars throughout Australia and with the countrys changing climates from temperate in the south to tropical in the north not all cultivars are going to be adapted to all regions. The project evaluated 19 buffalo grass cultivars along with other warm-season grasses including green couch, kikuyu and sweet smother grass. The soft-leaf buffalo grasses were evaluated for their growth and adaptation in a number of regions throughout Australia including Western Australia, Victoria, ACT, NSW and Queensland. The growth habit of the individual cultivars was examined along with their level of shade tolerance, water use, herbicide tolerance, resistance to wear, response to nitrogen applications and growth potential in highly alkaline (pH) soils. The growth habit of the various cultivars currently commercially available in Australia differs considerably from the more robust type that spreads quicker and is thicker in appearance (Sir Walter, Kings Pride, Ned Kelly and Jabiru) to the dwarf types that are shorter and thinner in appearance (AusTine and AusDwarf). Soft-leaf buffalo grass types tested do not differ in water use when compared to old-style common buffalo grass. Thus, soft-leaf buffalo grasses, like other warm-season turfgrass species, are efficient in water use. These grasses also recover after periods of low water availability. Individual cultivar differences were not discernible. In high pH soils (i.e. on alkaline-side) some elements essential for plant growth (e.g. iron and manganese) may be deficient causing turfgrass to appear pale green, and visually unacceptable. When 14 soft-leaf buffalo grass genotypes were grown on a highly alkaline soil (pH 7.5-7.9), cultivars differed in leaf iron, but not in leaf manganese, concentrations. Nitrogen is critical to the production of quality turf. The methods for applying this essential element can be manipulated to minimise the maintenance inputs (mowing) during the peak growing period (summer). By applying the greatest proportion of the turfs total nitrogen requirements in early spring, peak summer growth can be reduced resulting in a corresponding reduction in mowing requirements. Soft-leaf buffalo grass cultivars are more shade and wear tolerant than other warm-season turfgrasses being used by homeowners. There are differences between the individual buffalo grass varieties however. The majority of types currently available would be classified as having moderate levels of shade tolerance and wear reasonably well with good recovery rates. The impact of wear in a shaded environment was not tested and there is a need to investigate this as this is a typical growing environment for many homeowners. The use of herbicides is required to maintain quality soft-leaf buffalo grass turf. The development of softer herbicides for other turfgrasses has seen an increase in their popularity. The buffalo grass cultivars currently available have shown varying levels of susceptibility to the chemicals tested. The majority of the cultivars evaluated have demonstrated low levels of phytotoxicity to the herbicides chlorsulfuron (Glean) and fluroxypyr (Starane and Comet). In general, soft leaf buffalo grasses are varied in their makeup and have demonstrated varying levels of tolerance/susceptibility/adaptation to the conditions they are grown under. Consequently, there is a need to choose the cultivar most suited to the environment it is expected to perform in and the management style it will be exposed to. Future work is required to assess how the structure of the different cultivars impacts on their capacity to tolerate wear, varying shade levels, water use and herbicide tolerance. The development of a growth model may provide the solution.
Resumo:
The nitrogen-driven trade-off between nitrogen utilisation efficiency (yield per unit nitrogen uptake) and water use efficiency (yield per unit evapotranspiration) is widespread and results from well established, multiple effects of nitrogen availability on the water, carbon and nitrogen economy of crops. Here we used a crop model (APSIM) to simulate the yield, evapotranspiration, soil evaporation and nitrogen uptake of wheat, and analysed yield responses to water, nitrogen and climate using a framework analogous to the rate-duration model of determinate growth. The relationship between modelled grain yield (Y) and evapotranspiration (ET) was fitted to a linear-plateau function to derive three parameters: maximum yield (Ymax), the ET break-point when yield reaches its maximum (ET#), and the rate of yield response in the linear phase ([Delta]Y/[Delta]ET). Against this framework, we tested the hypothesis that nitrogen deficit reduces maximum yield by reducing both the rate ([Delta]Y/[Delta]ET) and the range of yield response to evapotranspiration, i.e. ET# - Es, where Es is modelled median soil evaporation. Modelled data reproduced the nitrogen-driven trade-off between nitrogen utilisation efficiency and water use efficiency in a transect from Horsham (36°S) to Emerald (23°S) in eastern Australia. Increasing nitrogen supply from 50 to 250 kg N ha-1 reduced yield per unit nitrogen uptake from 29 to 12 kg grain kg-1 N and increased yield per unit evapotranspiration from 6 to 15 kg grain ha-1 mm-1 at Emerald. The same increment in nitrogen supply reduced yield per unit nitrogen uptake from 30 to 25 kg grain kg-1 N and increased yield per unit evapotranspiration from 6 to 25 kg grain ha-1 mm-1 at Horsham. Maximum yield ranged from 0.9 to 6.4 t ha-1. Consistent with our working hypothesis, reductions in maximum yield with nitrogen deficit were associated with both reduction in the rate of yield response to ET and compression of the range of yield response to ET. Against the notion of managing crops to maximise water use efficiency in low rainfall environments, we emphasise the trade-off between water use efficiency and nitrogen utilisation efficiency, particularly under conditions of high nitrogen-to-grain price ratio. The rate-range framework to characterise the relationship between yield and evapotranspiration is useful to capture this trade-off as the parameters were responsive to both nitrogen supply and climatic factors.
Resumo:
Seagrass meadows are declining globally at an unprecedented rate, yet these valuable ecosystem service providers remain marginalized within many conservation agendas. In the Indo-Pacific, this is principally because marine conservation priorities do not recognize the economic and ecological value of the goods and services that seagrasses provide. Dependency on coastal marine resources in the Indo-Pacific for daily protein needs is high relative to other regions and has been found in some places to be up to 100%. Habitat loss therefore may have negative consequences for food security in the region. Whether seagrass resources comprise an important contribution to this dependency remains largely untested. Here, we assemble information sources from throughout the Indo-Pacific region that discuss shallow water fisheries, and examine the role of seagrass meadows in supporting production, both directly, and indirectly through process of habitat connectivity (e.g., nursery function and foraging areas). We find information to support the premise that seagrass meadows are important for fisheries production. They are important fishery areas, and they support the productivity and biodiversity of coral reefs. We argue the value of a different paradigm to the current consensus on marine conservation priorities within the Indo-Pacific that places seagrass conservation as a priority.
Resumo:
In grassland reserves, managed disturbance is often necessary to maintain plant species diversity. We carried out experiments to determine the impact of fire, kangaroo grazing, mowing and disc ploughing on grassland species richness and composition in a nature reserve in semi-arid eastern Australia. Vegetation response was influenced by winter-spring drought after establishment of the experiments, but moderate rainfall followed in late summer-autumn. Species composition varied greatly between sampling times, and the variability due to rainfall differences between seasons and years was greater than the effects of fire, kangaroo grazing, mowing or disc ploughing. In the fire experiment, species richness and composition recovered more rapidly after spring than autumn burning. Species richness and composition were similar to control sites within 12 months of burning and mowing, suggesting that removal of the dominant grass canopy is unnecessary to enhance plant diversity. Two fires (separated by 3 years) and post-fire kangaroo grazing had only minor influence on species richness and composition. Even disc ploughing caused only a small reduction in native richness. The minor impact of ploughing was explained by the small areas that were ploughed, the once-off nature of the treatment, and the high degree of natural movement and cracking in these shrink-swell soils. Recovery of the composition and richness of these grasslands was rapid because of the high proportion of perennial species that resprout vegetatively after fire and mowing. There appears to be little conservation benefit from fire, mowing or ploughing ungrazed areas, as we could identify no native plant species dependent on frequent disturbance for persistence in this grassland community. However, the ability of the Astrebla- and Dichanthium-dominated grasslands to recover quickly after disturbance, given favourable seasonal conditions, suggests that they are well adapted to natural disturbances (e.g. droughts, fire, flooding and native grazing).
Resumo:
A 2000-03 study to improve irrigation efficiency of grassed urban public areas in northern Australia found it would be difficult to grow most species in dry areas without supplementary watering. Sporoboulus virginicus and sand couch, Zoysia macrantha, were relatively drought-tolerant. Managers of sporting fields, parks and gardens could more than halve their current water use by irrigating over a long cycle, irrigating according to seasonal conditions and using grasses with low water use and sound soil management practices that encourage deep rooting. The use of effluent water provides irrigation and fertiliser cost savings and reduced nitrogen and phosphorus discharge to local waterways. Projected savings are $8000/ha/year in water costs for a typical sporting field.
Resumo:
The long-term competitiveness of the both the Vietnamese feed and pig production industries are constrained and under pressure whilst the industry is dependent on the use of imported feed ingredients in diets for animal production. These cost pressures are a result of import taxes, transport costs, currency fluctuations and feed supply limitations. By undertaking studies on available resources which are currently under-utilised and with potential as local feeds, we can prove their suitability for use as feedstuffs in pig diets and as replacements for imported feed ingredients. In undertaking this process we can lower feeding costs for pig production in Vietnam by the use of local feeds which are cheaper, generate new industries in Vietnam harvesting or processing these feeds and increase the incomes of Vietnamese workers who are involved in producing these by-products. Our project has shown that rubber seed, when processed correctly to lower the hydrogen cyanide content, is a safe and suitable protein meal feedstuff for use in pig diets with the potential to replace significant quantities of imported soybean and fishmeal in Vietnamese pig diets as long as diets are balanced for any amino acid shortfalls. Our peanut studies have shown that use of binders can help alleviate pig production problems with aflatoxin content in peanut meals. Further work is needed to characterise the fate of the bound aflatoxin to see if there is any meat residue risk. Cassava residue is a resultant by-product from starch extraction in both large and small cassava processing factories. Sub-samples from these two mill types were collected and evaluated for residue HCN. Analyses has shown that the processing and sun drying results in a product with relatively consistent low HCN content. Chemical analyses also reveal that significant residual starch also remains in this by-product. Digestibility studies and pig performance feeding studies have shown that cassava residue can be included in diets at 30% with no adverse effect, although the higher fibre content of this product means that strategically, cassava residue is more suitably used in finisher and sow diets. Research has examined the digestible energy content of a number of sunflower meal types available in Australia and identified major differences in their energy value based on processing, additionally, amino acid analysis has shown a significantly lower lysine content than previous reported. We also examined the digestible energy content of a number of Australian stylo forage legume harvest batches and identified the differences in their energy value based on age/harvest time of the forage legume. Analysis results of various stylo cuts showed that the early cut stylo has a higher starch content and lower fibre fraction content than observed in late and recut stylo which were allowed to grow longer. As a result the faecal digestible energy content was higher for the early cut stylo than for the subsequent cut stylo material which had been allowed to become woody. The results have shown that feeding of stylo meal does provide some nutritive value to the pig with increased energy and nitrogen supply, with a portion of the nitrogen presented which the pig is able to retain. Based on nutrient and fibre content stylo could have a useful role in sow feeding and satiety under non-stall housing situations. With increasing Vietnamese investment in rubber production seen with larger areas under plantations the amounts of rubber seed available for animal feeding will grow significantly over the next 15 years and the importance of the by-product ie rubber seed meal as a protein source in diets for Vietnamese pigs.
Resumo:
This work will progess and extend recommendations and guidelines for use of integrated wet season spelling in Queenslands savannahs and woodlands. The research will generate a greater ecological and pasture production understanding of pastures and soils that exist in C land condition areas (major landtypes), and their recovery. Practical, cost-effective spelling regimes will be developed. Research will be conducted on-property with small plot exclosures and plots with controlled utilisation levels, examining ecological responses to different spelling regimes. This information will improve bio-economic modelling capacity. Industry consultations with producers and field staff will drive implementation of the recommendations arising.
Resumo:
Improving added value and Small Medium Enterprises capacity in the utilisation of plantation timber for furniture production in Jepara region of Indonesia: improving recovery, design, manufacturing, R&D and training capacities.
Resumo:
DEEDI is tendering for this project because it considers that macadamia breeding is essential for long-term industry viability and that new productive cultivars will be the basis for the industry to withstand future competition from overseas and from other nut crops.
Resumo:
Background: The Queensland East Coast Otter Trawl Fishery (ECOTF) for penaeid shrimp fishes within Australia's Great Barrier Reef World Heritage Area (GBRWHA). The past decade has seen the implementation of conservation and fisheries management strategies to reduce the impact of the ECOTF on the seabed and improve biodiversity conservation. New information from electronic vessel location monitoring systems (VMS) provides an opportunity to review the interactions between the ECOTF and spatial closures for biodiversity conservation. Methodology and Results: We used fishing metrics and spatial information on the distribution of closures and modelled VMS data in a geographical information system (GIS) to assess change in effort of the trawl fishery from 2001-2009 and to quantify the exposure of 70 reef, non-reef and deep water bioregions to trawl fishing. The number of trawlers and the number of days fished almost halved between 2001 and 2009 and new spatial closures introduced in 2004 reduced the area zoned available for trawl fishing by 33%. However, we found that there was only a relatively minor change in the spatial footprint of the fishery as a result of new spatial closures. Non-reef bioregions benefited the most from new spatial closures followed by deep and reef bioregions. Conclusions/Significance: Although the catch of non target species remains an issue of concern for fisheries management, the small spatial footprint of the ECOTF relative to the size of the GBRWHA means that the impact on benthic habitats is likely to be negligible. The decline in effort as a result of fishing industry structural adjustment, increasing variable costs and business decisions of fishers is likely to continue a trend to fish only in the most productive areas. This will provide protection for most benthic habitats without any further legislative or management intervention.
Resumo:
An assessment of marine elapid snakes found 9% of marine elapids are threatened with extinction, and an additional 6% are Near Threatened. A large portion (34%) is Data Deficient. An analysis of distributions revealed the greatest species diversity is found in Southeast Asia and northern Australia. Three of the seven threatened species occur at Ashmore and Hibernia Reefs in the Timor Sea, while the remaining threatened taxa occur in the Philippines, Niue, and Solomon Islands. The majority of Data Deficient species are found in Southeast Asia. Threats to marine snakes include loss of coral reefs and coastal habitat, incidental bycatch in fisheries, as well as fisheries that target snakes for leather. The presence of two Critically Endangered and one Endangered species in the Timor Sea suggests the area is of particular conservation concern. More rigorous, long-term monitoring of populations is needed to evaluate the success of "conservation measures" for marine snake species, provide scientifically based guidance for determining harvest quotas, and to assess the populations of many Data Deficient species.
Resumo:
Effective and targeted conservation action requires detailed information about species, their distribution, systematics and ecology as well as the distribution of threat processes which affect them. Knowledge of reptilian diversity remains surprisingly disparate, and innovative means of gaining rapid insight into the status of reptiles are needed in order to highlight urgent conservation cases and inform environmental policy with appropriate biodiversity information in a timely manner. We present the first ever global analysis of extinction risk in reptiles, based on a random representative sample of 1500 species (16% of all currently known species). To our knowledge, our results provide the first analysis of the global conservation status and distribution patterns of reptiles and the threats affecting them, highlighting conservation priorities and knowledge gaps which need to be addressed urgently to ensure the continued survival of the world’s reptiles. Nearly one in five reptilian species are threatened with extinction, with another one in five species classed as Data Deficient. The proportion of threatened reptile species is highest in freshwater environments, tropical regions and on oceanic islands, while data deficiency was highest in tropical areas, such as Central Africa and Southeast Asia, and among fossorial reptiles. Our results emphasise the need for research attention to be focussed on tropical areas which are experiencing the most dramatic rates of habitat loss, on fossorial reptiles for which there is a chronic lack of data, and on certain taxa such as snakes for which extinction risk may currently be underestimated due to lack of population information. Conservation actions specifically need to mitigate the effects of human-induced habitat loss and harvesting, which are the predominant threats to reptiles.