149 resultados para Insects, Injurious and beneficial.
Resumo:
The Australian sheep blowfly, Lucilia cuprina initiates more than 85% of fly strikes on sheep in Australia with an estimated average annual cost of A$280 million to the Australian wool industry. LuciTrap® is a commercially available, selective trap for L. cuprina consisting of a plastic bucket with multiple fly entry cones and a synthetic attractant. The impact of LuciTrap on populations of L. cuprina on sheep properties in five Australian states was evaluated by comparing L. cuprina populations on paired properties with and without LuciTraps over seasons when significant fly populations could be expected. Twenty-four comparisons (trials) were conducted over four years. During times of ‘higher fly density’ (when the 48 h geometric mean of trap catches on the control property was greater than five L. cuprina), the overall geometric mean trap catches for control and trapped properties differed significantly (P<0.001) with mean trap catches of 19.4 and 7.74 L. cuprina respectively. The selectivity of the LuciTrap was confirmed with 59% of all trapped flies being L. cuprina. Chrysomya spp. and Calliphora spp. constituted 9.3% and 1.1% of the catches with a variety of other flies (mainly Sarcophagidae and Muscidae) providing the remainder (31%). L. sericata was only trapped in Tasmania and made up 7.7% of the Lucilia spp. catch in this State. Seventy-two percent of the trapped L. cuprina were female. The deployment of LuciTrap on sheep properties at one trap per 100 sheep from the beginning of the anticipated fly season suppressed the populations of L. cuprina by 60% compared to matched control properties. The LuciTrap is a selective and easy to use fly trap and constitutes an effective, non-insecticidal tool for use in integrated management programs for L. cuprina.
Resumo:
For approximately three decades the Australian broiler industry has relied heavily on the use of insecticides as its key tool for management of darkling beetle or lesser mealworm, Alphitobius diaperinus [Panzer] in broiler houses. The use of these chemicals over this period has been largely unchecked which has resulted in the development of strong insecticide resistance in many beetle populations from broiler farms. Although we are in a period now with an improved knowledge of managing resistance and the availability of new more effective insecticides that are currently marketed, the industry still requires more pest management options in order to inhibit development of resistance and reduce overall chemical use. In response to this need, ‘natural’ agents such as entomopathogenic nematodes and fungi were proposed as potential agents for managing darkling beetle populations in Australian broiler houses. Since 2007 laboratory and field studies have been undertaken to assess these agents. This report outlines these studies and discusses potential benefits to the Chicken Meat industry resulting from this research.
Resumo:
Insects can cause considerable damage in hardwood plantations and because pesticide use is controversial, future pest management may rely on manipulating insect behaviour. Insects use infochemical cues to identify and locate mates and host plants and this can be used to manipulate their behaviour and reduce pest impacts in plantations. Infochemicals include chemical signals produced by insects, such as pheromones and kairomones, or those produced by host plants as odours or volatiles that are attractive to insects. This research is learning how insects perceive and interact with chemical cues or infochemicals in their environment and how these interactions can be manipulated for monitoring and control. Pest species being investigated include the giant wood moth (Endoxyla cinerea), Culama wood moths, the eucalypt leaf beetle (Paropsis atomaria), red cedar tip moth (Hypsipyla robusta) and several longicorn wood borers. The project will contribute to new strategies for minimising damage and controlling pest densities in Queensland's hardwood plantations.
Resumo:
A pheromone-based trapping system will be developed for both A. lutescens and A. nitida to improve insecticide timing and to rationalise use.
Resumo:
Review of the biology of the Australian weed Baccharis halimifolia. This paper reviews the morphology, geographical distribution, habitat, growth and development, reproduction (flowering, seed production and dispersal, and seed germination), hybrids, population dynamics, importance (detrimental and beneficial), legislation, and control (using mechanical methods, herbicides and biological control agents/natural enemies) of an invasive alien species, B. shall.
Resumo:
Passalidae (Polyphaga, Coleoptera) is a family of beetles with approximately 960 species that are distributed worldwide. Preliminary studies that characterized ascomycete and basidiomycete yeasts in the gut of these wood-eating beetles from the USA, Guatemala, and Thailand, demonstrated associations between certain yeast taxa and passalids. We extended the study to include yeasts and beetles from tropical forests near Cairns and Brisbane, Queensland, Australia. We isolated more than 1000 yeast strains from about 150 beetles belonging to 10 species. LSU and ITS rRNA markers were used to identify a subset of 250 yeast strains, which revealed that the gut of Australian passalids contained undescribed ascomycetes in the Debaryomyces, Dipodascus, Kazachstania, Ogataea, Scheffersomyces, Sugiyamaella, Spathaspora, Torulaspora, and Zygowilliopsis clades, as well as basidiomycetes in the genera Cryptococcus and Trichosporon. A close relative of Candida subhashii (Spathaspora clade) and the xylose-fermenting yeast Scheffersomyces stipitis were the most common species isolated in Queensland. These results agree with those of previous studies that showed a common association of xylose-fermenting yeasts in the gut of lignicolous insects. Species and higher taxa of yeasts, however, vary between Queensland passalids and those previously collected in distant regions.
Resumo:
Nezara viridula (L.) is a cosmopolitan, polyphagous heteropteran that causes economic damage to many crop species. At present, control of N. viridula in Australia and other countries relies heavily upon insecticides, most of which are disruptive to beneficial insects, constituting a constraint on integrated pest management (IPM). Much research has been conducted into non-chemical control methods for N. viridula. This paper reviews the potential for and limitations of sterile insect technique, classical, inundative and conservation biological control, and trap cropping. None of these techniques appear to be adequate for control of N. viridula when used alone but there is scope for these non-chemical approaches to be adopted for use in integrated management of this pest. A proposal is given for one such integrated approach for future development. It includes biopesticides, trap crops and carefully targeted habitat manipulation to enhance arthropod natural enemies as well as area-wide management and grower education.
Resumo:
Many arthropod predators and parasitoids exhibit either stage-specific or lifetime omnivory, in that they include extra-floral nectar, floral nectar, honeydew or pollen in their immature and/or adult diet. Access to these plant-derived foods can enhance pest suppression by increasing both the individual fitness and local density of natural enemies. Commercial products such as Amino-Feed®, Envirofeast®, and Pred-Feed® can be applied to crops to act as artificial-plant-derived foods. In laboratory and glasshouse experiments we examined the influence of carbohydrate and protein rich Amino-Feed UV® or Amino-Feed, respectively, on the fitness of a predatory nabid bug Nabis kinbergii Reuter (Hemiptera: Nabidae) and bollworm pupal parasitoid Ichneumon promissorius (Erichson) (Hymenoptera: Ichneumonidae). Under the chosen conditions, the provision of either wet or dry residues of Amino-Feed UV had no discernable effect on immediate or longer-term survival and immature development times of N. kinbergii. In contrast, the provision of honey, Amino-Feed plus extrafloral nectar, and extrafloral nectar alone had a marked effect on the longevity of I. promissorius, indicating that they were limited by at least carbohydrates as an energy source, but probably not protein. Compared with a water only diet, the provision of Amino-Feed plus extrafloral nectar increased the longevity of males and females of I. promissorius by 3.0- and 2.4-fold, respectively. Not only did female parasitoids live longer when provided food, but the total number of eggs laid and timing of deposition was affected by diet under the chosen conditions. Notably, females in the water and honey treatments deposited greater numbers of eggs earlier in the trial, but this trend was unable to be sustained over their lifetime. Egg numbers in these treatments subsequently fell below the levels achieved by females in the Amino-Feed plus extrafloral nectar and cotton extrafloral nectar only treatments. Furthermore, there were times when the inclusion of the Amino-Feed was beneficial compared with cotton extrafloral nectar only. Artificial food supplements and plant-derived foods are worthy of further investigation because they have potential to improve the ecosystem service of biological pest control in targeted agroecosystems by providing natural enemies with an alternative source of nutrition, particularly during periods of prey/host scarcity.
Resumo:
We revise the genus Opisthoscelis Schrader, and erect the genus Tanyscelis gen. n. with Opisthoscelis pisiformis Froggatt as its type species. Species of both genera induce sexually dimorphic galls on Eucalyptus (Myrtaceae) in Australia, with Opisthoscelis subrotunda Schrader also in Papua New Guinea. We synonymise the following taxa (junior synonym with senior synonym): Opisthoscelis fibularis Froggatt, syn. n. with Opisthoscelis spinosa Froggatt; Opisthoscelis recurva Froggatt, syn. n. with Opisthoscelis maculata Froggatt; Opisthoscelis globosa Froggatt, syn. n. (=Opisthoscelis ruebsaameni Lindinger) with Opisthoscelis convexa Froggatt; and Opisthoscelis mammularis Froggatt, syn. n. with Opisthoscelis verrucula Froggatt. We transfer seven Opisthoscelis species to Tanyscelis as Tanyscelis conica (Fuller), comb. n., Tanyscelis convexa (Froggatt), comb. n., Tanyscelis maculata (Froggatt), comb. n., Tanyscelis maskelli (Froggatt), comb. n., Tanyscelis pisiformis (Froggatt), comb. n., Tanyscelis spinosa (Froggatt), comb. n., and Tanyscelis verrucula (Froggatt), comb. n. We redescribe and illustrate the adult female of each named species of Opisthoscelis for which the type material is known, as well as the first-instar nymph of the type species of Opisthoscelis (Opisthoscelis subrotunda) and Tanyscelis (Opisthoscelis pisiformis). We describe four new species of Opisthoscelis: Opisthoscelis beardsleyi Hardy & Gullan, sp. n., Opisthoscelis thurgoona Hardy & Gullan, sp. n., Opisthoscelis tuberculata Hardy & Gullan, sp. n., and Opisthoscelis ungulifinis Hardy & Gullan, sp. n., and five new species of Tanyscelis: Tanyscelis grallator Hardy & Gullan, sp. n., Tanuscelis megagibba Hardy & Gullan, sp. n., Tanyscelis mollicornuta Hardy & Gullan, sp. n., Tanyscelis tripocula Hardy & Gullan, sp. n., and Tanyscelis villosigibba Hardy & Gullan, sp. n. We designate lectotypes for Opisthoscelis convexa, Opisthoscelis fibularis, Opisthoscelis globosa Froggatt, Opisthoscelis maculata, Opisthoscelismammularis, Opisthoscelis maskelli, Opisthoscelis pisiformis, Opisthoscelis recurva, Opisthoscelis serrata, Opisthoscelis spinosa, and Opisthoscelis verrucula. As a result of our taxonomic revision, Opisthoscelis has six species and Tanyscelis has 12 species. We describe the galls of females for all 18 species and galls of males for 10 species of Opisthoscelis and Tanyscelis, and provide photographs of the galls for most species. A key to the adult females of the species of both genera is included.
Resumo:
The major objective is to produce an educational tool for growers and research/extension personnel to allow accurate identification of a range of pests and diseases encountered in herbs. To a lessor extent develop both a mechanism to manage beneficial insects in field crops pre-harvest and to identify some common seed borne diseases in herbs.
Improved understanding of the damage, ecology, and management of mirids and stinkbugs in Bollgard II
Resumo:
In recent years mirids and stinkbugs have emerged as important sucking pests in cotton. While stinkbugs are causing damage to bolls, mirids are causing damage to seedlings, squares and bolls. With the increasing adoption of Bollgard II and IPM approaches the use of broad-spectrum chemicals to kill Helicoverpa has been reduced and as a result mirids and stinkbugs are building to levels causing damage to bolls later in crop growth stages. Studies on stinkbugs by Dr Moazzem Khan revealed that green vegetable bug (GVB) caused significant boll damage and yield loss. A preliminary study by Dr Khan on mirids revealed that high mirid numbers at later growth stages also caused significant boll damage and that damage caused by mirids and GVB were similar. Mirids and stinkbugs therefore demand greater attention in order to minimise losses caused by these pests and to develop IPM strategies against these pests to enhance gains in IPM that have been made with Bt-transgenic cotton. Progress in this area of research will maintain sustainability and profitability of the Australian cotton industry. Mirid damage at early growth stages of cotton (up to squaring stage) has been studied in detail by Dr Khan. He found that all ages of mirids cause damage to young plants and damage by mirid nymphs is cumulative. Maximum damage occurs when the insect reaches the 4th and 5th nymphal stages. He also found that mirid feeding causes shedding of small and medium squares, and damaged large squares develop as ‘parrot beak’ bolls. Detailed studies at the boll stage, such as which stage of mirids is most damaging or which age boll is most vulnerable to feeding, is lacking. This information is a prerequisite to developing an IPM strategy for the pest in later crop growth stages. Understanding population change of the pest over time in relation to crop development is an important aspect for developing management strategies for the pest which is lacking for mirids in BollgardII. Predators and parasitoids are integral components of any IPM system and play an important part in regulating pest populations. Some generalist predators such as ants, spiders, damsel bugs and assassin bugs are known to predate on mirids. Nothing is known about parasitoids of mirids. Since green mirid (GM), Creontiades dilutus, is indigenous to Australia it is likely that we have one or more parasitoids of this mirid in Australia, but that possibility has not been investigated yet. The impact of the GVB adult parasitoid, Trichopoda giacomelli, has been studied by Dr Khan who found that the fly is established in the released areas and continues to spread. However, to get wider and greater impact, the fly should be released in new locations across the valleys. The insecticides registered for mirids and stinkbugs are mostly non-selective and are extremely disruptive to a wide range of beneficial insects. Use of these insecticides at stage I and II will minimise the impact of existing IPM programs. Therefore less disruptive control tactics including soft chemicals for mirids and stinkbugs are necessary. As with soft chemicals, salt mixtures, biopesticides based on fungal pathogens and attractants based on plant volatiles may be useful tools in managing mirids and stinkbugs with less or no disruption. Dr Khan has investigated salt mixture against mirids and GVB. While salt mixtures are quite effective and less disruptive, they are quite chemical specific. Not all chemicals mixed with salt will give the desired benefit. Therefore further investigation is needed to identify those chemicals that are effective with salt mixture against mirids and 3 of 37 GVB. Dr Caroline Hauxwell of DPI&F is working on fungal pathogen-based biopesticides against mirids and GVB and Drs Peter Gregg and Alice Del Socorro of Australian Cotton CRC are working on plant volatile-based attractants against mirids. Depending on their findings, inclusion of fungal-based biopestcides and plant volatile-based attractants in developing a management system against mirids and stinkbugs in cotton could be an important component of an IPM approach.
Resumo:
Resistance to phosphine was characterised in strains of rice weevil, Sirophilus oryzae, and the psocids Liposcelis entomophila and L. decolor from China and Australia. Mixed-age cultures (containing all life stages) of insects were tested using a flow-through apparatus. The criterion of response was 'time to population extinction' defined as the exposure period, in days, at which 100% mortality of adults and no live progeny were achieved. Chinese S. oryzae took 11 and 7 days for population extinction at 200 and 700 ppm phosphine, respectively, compared with the Australian strain, which was controlled in 7 and 5 days, respectively. Similarly, the Chinese strains L. Enfornophila and L. decolor were generally more difficult to control than the corresponding Australian strains. The Chinese strains of L. decolor showed resistance levels stronger than any grain storage insect pest species so far detected in Australia. This research allows us to evaluate the likely significance of potential new resistance to the Australian grain industry and to prepare effective fumigation dosages and resistance management strategies to combat new strong resistances before they emerge here.
Resumo:
The genus Colasposorna Laporte is shown to be represented in Australia by a single species, C. sellaturn Baly (= C. barbaturn Harold, syn. conf.; = C. regulare Jacoby, syn. nov.). The adult and larva are described and lectotypes designated for C. sellaturn and C. regulare. Colasposoma sellaturn is recorded from the Northern Territory, northern Queensland and New Guinea. This species is a pest of Ipomoea batatas (sweet potato) in northern Queensland, where the adults damage stems and foliage and larvae may cause considerable damage to tubers. Its pest status is assessed and control measures discussed.
Resumo:
A new tribe, the Stereomerini, is established for four unusual genera: Stereomera Arrow, Termitaxis Krikken, Australoxenella n.gen., and Bruneixenus n.gen. The previously described genera are monotypic, as is Bruneixenus, the type species being B. squamosus n.sp. from Brunei. Australoxenella contains two new species, A. humptydooensis, type species, and A. bathurstensis, both from the Northern Territory, Australia. The relationships of the new tribe are analyzed and compared with the most closely related tribe, the Rhyparini, in the Aphodiinae. The tribe Rhyparini is redefined, and the genus Notocaulus Quedenfeldt is transferred to the Eupariini. A key to genera in both the Stereomerini and the Rhyparini is presented, important characters are illustrated, a cladogram is given, and convergence is discussed.