25 resultados para INFRARED-SPECTRA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of near infrared (NIR) hyperspectral imaging and hyperspectral image analysis for distinguishing between hard, intermediate and soft maize kernels from inbred lines was evaluated. NIR hyperspectral images of two sets (12 and 24 kernels) of whole maize kernels were acquired using a Spectral Dimensions MatrixNIR camera with a spectral range of 960-1662 nm and a sisuChema SWIR (short wave infrared) hyperspectral pushbroom imaging system with a spectral range of 1000-2498 nm. Exploratory principal component analysis (PCA) was used on absorbance images to remove background, bad pixels and shading. On the cleaned images. PCA could be used effectively to find histological classes including glassy (hard) and floury (soft) endosperm. PCA illustrated a distinct difference between glassy and floury endosperm along principal component (PC) three on the MatrixNIR and PC two on the sisuChema with two distinguishable clusters. Subsequently partial least squares discriminant analysis (PLS-DA) was applied to build a classification model. The PLS-DA model from the MatrixNIR image (12 kernels) resulted in root mean square error of prediction (RMSEP) value of 0.18. This was repeated on the MatrixNIR image of the 24 kernels which resulted in RMSEP of 0.18. The sisuChema image yielded RMSEP value of 0.29. The reproducible results obtained with the different data sets indicate that the method proposed in this paper has a real potential for future classification uses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The inability to consistently guarantee internal quality of horticulture produce is of major importance to the primary producer, marketers and ultimately the consumer. Currently, commercial avocado maturity estimation is based on the destructive assessment of percentage dry matter (%DM), and sometimes percentage oil, both of which are highly correlated with maturity. In this study the utility of Fourier transform (FT) near-infrared spectroscopy (NIRS) was investigated for the first time as a non-invasive technique for estimating %DM of whole intact 'Hass' avocado fruit. Partial least squares regression models were developed from the diffuse reflectance spectra to predict %DM, taking into account effects of intra-seasonal variation and orchard conditions. RESULTS: It was found that combining three harvests (early, mid and late) from a single farm in the major production district of central Queensland yielded a predictive model for %DM with a coefficient of determination for the validation set of 0.76 and a root mean square error of prediction of 1.53% for DM in the range 19.4-34.2%. CONCLUSION: The results of the study indicate the potential of FT-NIRS in diffuse reflectance mode to non-invasively predict %DM of whole 'Hass' avocado fruit. When the FT-NIRS system was assessed on whole avocados, the results compared favourably against data from other NIRS systems identified in the literature that have been used in research applications on avocados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near infrared spectroscopy (NIRS) can play a vital role as a cost effective, rapid, non-invasive, reproducible diagnostic tool for many environmental management, agricultural and industrial waste water monitoring applications. In this paper we highlight the ability of NIRS technology to be used as a diagnostic tool in agricultural and environmental applications through the successful assessment of Fourier Transform NIRS to predict α santalol in sandalwood chip samples, and maturity of ‘Hass’ avocado fruit based on dry matter content. Presented at the Third International Conference on Challenges in Environmental Science & Engineering, CESE-2010. 26 September – 1 October 2010, The Sebel, Cairns, Queensland, Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acidity in terms of pH and titratable acids influences the texture and flavour of fermented dairy products, such as Kefir. However, the methods for determining pH and titratable acidity (TA) are time consuming. Near infrared (NIR) spectroscopy is a non-destructive method, which simultaneously predicts multiple traits from a single scan and can be used to predict pH and TA. The best pH NIR calibration model was obtained with no spectral pre-treatment applied, whereas smoothing was found to be the best pre-treatment to develop the TA calibration model. Using cross-validation, the prediction results were found acceptable for both pH and TA. With external validation, similar results were found for pH and TA, and both models were found to be acceptable for screening purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quality and safety evaluation of agricultural products has become an increasingly important consideration in market/commercial viability and systems for such evaluations are now demanded by customers, including distributors and retailers. Unfortunately, most horticultural products struggle with delivering adequate and consistent quality to the consumer. Removing inconsistencies and providing what the consumer expects is a key factor for retaining and expanding both domestic and international markets. Most commercial quality classification systems for fruit and vegetables are based on external features of the product, for example: shape, colour, size, weight and blemishes. However, the external appearance of most fruit is generally not an accurate guide to the internal or eating quality of the fruit. Internal quality of fruit is currently subjectively judged on attributes such as volatiles, firmness, and appearance. Destructive subjective measures such as internal flesh colour, or objective measures such as extraction of juice to measure sweetness (oBrix) or assessment of dry matter (DM) content are also used, although obviously not for every fruit – just a sample to represent the whole consignment. For avocado fruit, external colour is not a maturity characteristic, and its smell is too weak and appears later in its maturity stage (Gaete-Garreton et al., 2005). Since maturity is a major component of avocado quality and palatability, it is important to harvest mature fruit, so as to ensure that fruit will ripen properly and have acceptable eating quality. Currently, commercial avocado maturity estimation is based on destructive assessment of the %DM, and sometimes percent oil, both of which are highly correlated with maturity (Clark et al., 2003; Mizrach & Flitsanov, 1999). Avocados Australia Limited (AAL (2008)) recommend a minimum maturity standard for its growers of 23 %DM (greater than 10% oil content) for the ‘Hass’ cultivar, although consumer studies indicate a preference for at least 25 %DM (Harker et al., 2007).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Twenty-two diverse sorghum landraces, classified as normal and opaque types obtained from Ethiopia, were characterised for grain quality parameters using near infra-red spectroscopy (NIRS), chemical and Rapid Visco-Analyzer (RVA) characteristics. RESULTS: Protein content ranged from 77 to 182 g kg-1, and starch content from 514 to 745 g kg(-1). The NIRS analysis indicated the pig faecal digestible energy range from 14.6 to 15.7MJ kg(-1) as fed, and the ileal digestible energy range from 11.3 to 13.9MJ kg(-1) as fed. The normal sorghums had higher digestible energy than the opaque sorghums, which exhibited lower RVA viscosities, and higher pasting temperatures and setback ratios. The RVA parameterswere positively correlated with the starch content and negatively correlated with the protein content. The normal and opaque types formed two distinct groups based on principal component and cluster analyses. CONCLUSION: The landraces were different for the various grain quality parameters with some landraces displaying unique RVA and NIRS profiles. This study will guide utilisation of the sorghum landraces in plant improvement programs, and provides a basis for further studies into how starch and other constituents behave in and affect the properties of these landraces. (C) 2011 Society of Chemical Industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: In order to rapidly and efficiently screen potential biofuel feedstock candidates for quintessential traits, robust high-throughput analytical techniques must be developed and honed. The traditional methods of measuring lignin syringyl/guaiacyl (S/G) ratio can be laborious, involve hazardous reagents, and/or be destructive. Vibrational spectroscopy can furnish high-throughput instrumentation without the limitations of the traditional techniques. Spectral data from mid-infrared, near-infrared, and Raman spectroscopies was combined with S/G ratios, obtained using pyrolysis molecular beam mass spectrometry, from 245 different eucalypt and Acacia trees across 17 species. Iterations of spectral processing allowed the assembly of robust predictive models using partial least squares (PLS). RESULTS: The PLS models were rigorously evaluated using three different randomly generated calibration and validation sets for each spectral processing approach. Root mean standard errors of prediction for validation sets were lowest for models comprised of Raman (0.13 to 0.16) and mid-infrared (0.13 to 0.15) spectral data, while near-infrared spectroscopy led to more erroneous predictions (0.18 to 0.21). Correlation coefficients (r) for the validation sets followed a similar pattern: Raman (0.89 to 0.91), mid-infrared (0.87 to 0.91), and near-infrared (0.79 to 0.82). These statistics signify that Raman and mid-infrared spectroscopy led to the most accurate predictions of S/G ratio in a diverse consortium of feedstocks. CONCLUSION: Eucalypts present an attractive option for biofuel and biochemical production. Given the assortment of over 900 different species of Eucalyptus and Corymbia, in addition to various species of Acacia, it is necessary to isolate those possessing ideal biofuel traits. This research has demonstrated the validity of vibrational spectroscopy to efficiently partition different potential biofuel feedstocks according to lignin S/G ratio, significantly reducing experiment and analysis time and expense while providing non-destructive, accurate, global, predictive models encompassing a diverse array of feedstocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylglyoxal (2-oxopropanal) is a compound known to contribute to the non-peroxide antimicrobial activity of honeys. The feasibility of using infrared spectroscopy as a predictive tool for honey antibacterial activity and methylglyoxal content was assessed. A linear relationship was found between methylglyoxal content (279–1755 mg/kg) in Leptospermum polygalifolium honeys and bacterial inhibition for Escherichiacoli (R2 = 0.80) and Staphylococcusaureus (R2 = 0.64). A good prediction of methylglyoxal (R2 0.75) content in honey was achieved using spectroscopic data from the mid infrared (MIR) range in combination with partial least squares regression. These results indicate that robust predictive equations could be developed using MIR for commercial application where the prediction of bacterial inhibition is needed to ‘value’ honeys with methylglyoxal contents in excess of 200 mg/kg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To age sharks, the growth bands in the shark vertebrae (like the rings in a tree) or on the spines in front of each dorsal fin (which only some sharks have) are manually counted using a microscope. This is time-consuming and is only possible on dead animals. NIR spectroscopy is shown to be able to detect age in dorsal fin spines of sharks and hand-held NIR spectroscopy units could potentially be used for ageing of sharks in the field, at sea, using a hand-held unit to scan the fin spine on a live animal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent investigations into plant tissues have indicated that the free form of the natural polyphenolic antioxidant, ellagic acid (EA), is much more plentiful than first envisaged; consequently a re-assessment of solvent systems for the extraction of this water-insoluble form is needed. As EA solubility and its UV-Vis spectrum, commonly used for detection and quantification, are both governed by pH, an understanding of this dependence is vital if accurate EA measurements are to be achieved. After evaluating the pH effects on the solubility and UV-Vis spectra of commercial EA, an extraction protocol was devised that promoted similar pH conditions for both standard solutions and plant tissue extracts. The extraction so devised followed by HPLC with photodiode-array detection (DAD) provided a simple, sensitive and validated methodology that determined free EA in a variety of plant extracts. The use of 100 % methanol or a triethanolamine-based mixture as the standard dissolving solvents were the best choices, while these higher pH-generating solvents were more efficient in extracting EA from the plants tested with the final choice allied to the plants’ natural acidity. Two of the native Australian plants anise myrtle (Syzygium anisatum) and Kakadu plum (Terminalia ferdinandiana) exhibited high concentrations of free EA. Furthermore, the dual approach to measuring EA UV-Vis spectra made possible an assessment of the effect of acidified eluent on EA spectra when the DAD was employed.