24 resultados para Helicoverpa


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is the first of a series which will describe the development of a synthetic plant volatile-based attracticide for noctuid moths. It discusses potential sources of volatiles attractive to the cotton bollworm, Helicoverpa armigera (Hubner), and an approach to the combination of these volatiles in synthetic blends. We screened a number of known host and non-host (for larval development) plants for attractiveness to unmated male and female moths of this species, using a two-choice olfactometer system. Out of 38 plants tested, 33 were significantly attractive to both sexes. There was a strong correlation between attractiveness of plants to males and females. The Australian natives, Angophora floribunda and several Eucalyptus species were the most attractive plants. These plants have not been recorded either as larval or oviposition hosts of Helicoverpa spp., suggesting that attraction in the olfactometer might have been as nectar foraging rather than as oviposition sources. To identify potential compounds that might be useful in developing moth attractants, especially for females, collections of volatiles were made from plants that were attractive to moths in the olfactometer. Green leaf volatiles, floral volatiles, aromatic compounds, monoterpenes and sesquiterpenes were found. We propose an approach to developing synthetic attractants, here termed 'super-blending', in which compounds from all these classes, which are in common between attractive plants, might be combined in blends which do not mimic any particular attractive plant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors overview integrated pest management (IPM) in grain crops in north-eastern Australia, which is defined as the area north of latitude 32°S. Major grain crops in this region include the coarse grains (winter and summer cereals), oilseeds and pulses. IPM in these systems is complicated by the diversity of crops, pests, market requirements and cropping environments. In general, the pulse crops are at greatest risk, followed by oilseeds and then by cereal grains. Insecticides remain a key grain pest management tool in north-eastern Australia. IPM in grain crops has benefited considerably through the increased adoption of new, more selective insecticides and biopesticides for many caterpillar pests, in particular Helicoverpa spp. and loopers, and the identification of pest-crop scenarios where spraying is unnecessary (e.g. for most Creontiades spp. populations in soybeans). This has favoured the conservation of natural enemies in north-eastern Australia grain crops, and has arguably assisted in the management of silverleaf whitefly in soybeans in coastal Queensland. However, control of sucking pests and podborers such as Maruca vitrata remains a major challenge for IPM in summer pulses. Because these crops have very low pest-damage tolerances and thresholds, intervention with disruptive insecticides is frequently required, particularly during podfill. The threat posed by silverleaf whitefly demands ongoing multi-pest IPM research, development and extension as this pest can flare under favourable seasonal conditions, especially where disruptive insecticides are used injudiciously. The strong links between researchers and industry have facilitated the adoption of IPM practices in north-eastern Australia and augers well for future pest challenges and for the development and promotion of new and improved IPM tactics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are two major pests of sorghum in Australia, the sorghum midge, Stenodiplosis sorghicola (Coquillett), and the corn earworm, Helicoverpa armigera (Hübner). During the past 10 years the management of these pests has undergone a revolution, due principally to the development of sorghum hybrids with resistance to sorghum midge. Also contributing has been the adoption of a nucleopolyhedrovirus for the management of corn earworm. The practical application of these developments has led to a massive reduction in the use of synthetic insecticides for the management of major pests of sorghum in Australia. These changes have produced immediate economic, environmental and social benefits. Other flow-on benefits include providing flexibility in planting times, the maintenance of beneficial arthropods and utilisation of sorghum as a beneficial arthropod nursery, a reduction in midge populations and a reduction in insecticide resistance development in corn earworm. Future developments in sorghum pest management are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bigeyed bugs (Geocoris spp., Hemiptera: Geocoridae) are common predators in Australian agricultural crops yet the development and reproductive biology of Australian geocorids has not been described before. Here we present the effects of diet, temperature and photoperiod on the development and survival of Geocoris lubra Kirkaldy from egg to adult. Nymphal survival of G. lubra reared on live aphids (Aphis gossypii Glover) was very low but improved slightly on a diet of Helicoverpa armigera (Hübner) eggs. Development was faster and nymphal survival improved significantly at 27°C compared with 25°C. Further investigation at 27°C showed photoperiod influenced development time, but not survival of immature G. lubra. Development time was significantly longer at 10L:14D. Fecundity of first generation G. lubra was not affected by photoperiod, although egg viability was greater at 12L:12D.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arthropods are known to use silk for a number of different purposes including web construction, shelter building, leaf tying, construction of pupal cocoons, and as a safety line when dislodged from a substrate (Alexander, 1961; Fitzgerald, 1983; Common, 1990). Across the arthropods, silk displays a diversity of material properties and chemical constituents and is produced from glands with different evolutionary origins (Craig, 1997). Among insects, larval Lepidoptera are prolific producers of silk. Because many lepidopteran larvae are pests, an ability to interfere with silk production or, at the very least, an understanding of how silk is used, could provide new options for pest control. After testing many known fluorescent dyes, we found that Fluorescent Brightener 28 (also known as Calcofluor White M2R) (Sigma-Aldrich Pty Ltd, Sydney, NSW, Australia), an optical brightener used in the textile industry, binds to arthropod silk in a simple staining reaction, causing it to fluoresce under ultraviolet (UV) light. Such brighteners have also been used in insect gut content analysis (Schlein & Muller, 1995; Hugo et al., 2003). Here we describe the method of visualizing arthropod silk on plant surfaces, using as a model the thin, barely visible, single strands of silk produced by Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) neonates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years mirids and stinkbugs have emerged as important sucking pests in cotton. While stinkbugs are causing damage to bolls, mirids are causing damage to seedlings, squares and bolls. With the increasing adoption of Bollgard II and IPM approaches the use of broad-spectrum chemicals to kill Helicoverpa has been reduced and as a result mirids and stinkbugs are building to levels causing damage to bolls later in crop growth stages. Studies on stinkbugs by Dr Moazzem Khan revealed that green vegetable bug (GVB) caused significant boll damage and yield loss. A preliminary study by Dr Khan on mirids revealed that high mirid numbers at later growth stages also caused significant boll damage and that damage caused by mirids and GVB were similar. Mirids and stinkbugs therefore demand greater attention in order to minimise losses caused by these pests and to develop IPM strategies against these pests to enhance gains in IPM that have been made with Bt-transgenic cotton. Progress in this area of research will maintain sustainability and profitability of the Australian cotton industry. Mirid damage at early growth stages of cotton (up to squaring stage) has been studied in detail by Dr Khan. He found that all ages of mirids cause damage to young plants and damage by mirid nymphs is cumulative. Maximum damage occurs when the insect reaches the 4th and 5th nymphal stages. He also found that mirid feeding causes shedding of small and medium squares, and damaged large squares develop as ‘parrot beak’ bolls. Detailed studies at the boll stage, such as which stage of mirids is most damaging or which age boll is most vulnerable to feeding, is lacking. This information is a prerequisite to developing an IPM strategy for the pest in later crop growth stages. Understanding population change of the pest over time in relation to crop development is an important aspect for developing management strategies for the pest which is lacking for mirids in BollgardII. Predators and parasitoids are integral components of any IPM system and play an important part in regulating pest populations. Some generalist predators such as ants, spiders, damsel bugs and assassin bugs are known to predate on mirids. Nothing is known about parasitoids of mirids. Since green mirid (GM), Creontiades dilutus, is indigenous to Australia it is likely that we have one or more parasitoids of this mirid in Australia, but that possibility has not been investigated yet. The impact of the GVB adult parasitoid, Trichopoda giacomelli, has been studied by Dr Khan who found that the fly is established in the released areas and continues to spread. However, to get wider and greater impact, the fly should be released in new locations across the valleys. The insecticides registered for mirids and stinkbugs are mostly non-selective and are extremely disruptive to a wide range of beneficial insects. Use of these insecticides at stage I and II will minimise the impact of existing IPM programs. Therefore less disruptive control tactics including soft chemicals for mirids and stinkbugs are necessary. As with soft chemicals, salt mixtures, biopesticides based on fungal pathogens and attractants based on plant volatiles may be useful tools in managing mirids and stinkbugs with less or no disruption. Dr Khan has investigated salt mixture against mirids and GVB. While salt mixtures are quite effective and less disruptive, they are quite chemical specific. Not all chemicals mixed with salt will give the desired benefit. Therefore further investigation is needed to identify those chemicals that are effective with salt mixture against mirids and 3 of 37 GVB. Dr Caroline Hauxwell of DPI&F is working on fungal pathogen-based biopesticides against mirids and GVB and Drs Peter Gregg and Alice Del Socorro of Australian Cotton CRC are working on plant volatile-based attractants against mirids. Depending on their findings, inclusion of fungal-based biopestcides and plant volatile-based attractants in developing a management system against mirids and stinkbugs in cotton could be an important component of an IPM approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trichogramma Westwood egg parasitoids alone generally fail to suppress heliothine pests when released in established cotton-growing regions. Factors hindering their success include indiscriminate use of detrimental insecticides, compensation for minimal pest larval hatch due to their activity via reduced larval cannibalism or mortality in general, singly laid heliothine eggs avoiding detection and asynchronous development benefiting host over parasitoid. Yet, despite these limitations, relatively large Trichogramma pretiosum Riley populations pervade and effectively suppress Helicoverpa (Hardwick) pests in Australian Bt (Bacillus thuringiensis Berliner)-transgenic cotton, Gossypium hirsutum L., crops, especially in the Ord River Irrigation Area (ORIA) of tropical northern Australia, where their impact on the potentially resistant pest species, Helicoverpa armigera (Hubner), is considered integral to the local insecticide resistance management (IRM) strategy for continued, sustainable Bt-transgenic cotton production. When devoid of conventional insecticides, relatively warm and stable conditions of the early dry season in winter grown ORIA Bt-transgenic cotton crops are conducive to Trichogramma proliferation and biological control appears effective. Further, there is considerable scope to improve Trichogramma's biological control potential, in both the ORIA and established cotton-growing regions, via habitat manipulation. It is proposed that Trichogramma may prove equally effective in developing agricultural regions of monsoonal northern Australia, and that environmental constraints on Trichogramma survival, and those of other natural enemies, require due consideration prior to their successful application in biological control programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review here research on semiochemicals for cotton pest management carried out in successive Cotton Co-operative Research Centres from 1998 to 2012. Australian cotton is now dominated by transgenic (Bt) varieties, which provide a strong platform for integrated pest management of key pests such as Helicoverpa spp., but new technologies are required to manage the development of resistance in Helicoverpa spp. to transgenic cotton and the problems posed by emerging and secondary pests, especially sucking insects. A long-range attractant for Helicoverpa moths, based on plant volatiles, has been commercialised as Magnet®. The product has substantial area-wide impacts on moth populations, and only limited effects on beneficial insects. Potential roles are being investigated for this product in resistance management of Helicoverpa spp. on transgenic cotton. Short-range, non-volatile compounds on organ surfaces of plants that do not support development of Helicoverpa spp. have been identified; these compounds deter feeding or oviposition, or are toxic to insect pests. One such product, Sero X®, is effective on Helicoverpa spp. and sucking pests such as whiteflies (Bemisia tabaci), green mirids (Creontiades dilutus), and other hemipteran insects, and is in the advanced stages of commercialisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cotton Catchment Communities Cooperative Research Centre began during a period of rapid uptake of Bollgard II® cotton, which contains genes to express two Bt proteins that control the primary pests of cotton in Australia, Helicoverpa armigera and H. punctigera. The dramatic uptake of this technology presumably resulted in strong selection pressure for resistance in Helicoverpa spp. against the Bt proteins. The discovery of higher than expected levels of resistance in both species against one of the proteins in Bollgard II® cotton (Cry2Ab) led to significant re-evaluation of the resistance management plan developed for this technology, which was a core area of research for the Cotton CRC. The uptake of Bollgard II® cotton also led to a substantial decline in pesticide applications against Helicoverpa spp. (from 10–14 to 0–3 applications per season). The low spray environment allowed some pests not controlled by the Bt proteins to emerge as more significant pests, especially sucking species such as Creontiades dilutus and Nezara viridula. A range of other minor pests have also sporadically arisen as problems. Lack of knowledge and experience with these pests created uncertainty and encouraged insecticide use, which threatened to undermine the gains made with Bollgard II® cotton. Here we chronicle the achievements of the Cotton CRC in providing the industry with new knowledge and management strategies for these pests.