43 resultados para Green clay
Resumo:
Ploidy: triploid interspecific hybrid (3n = 27 chromosomes). Plant: habit prostrate, creeping, type mat-forming, height very short, longevity perennial, spreading laterally by stolons and rhizomes. Stolon: compound nodes with up to 3 leaves, internode length very short, internode thickness very thin, colour grey-brown (RHS N199A) when exposed to sunlight. Culms: length very short. Leaf blade: shape linear-triangular, length short, width narrow, colour dark green (RHS 137B). Ligule: dense row of short white hairs. Inflorescence: digitate with 3(-4) very short spicate racemes, peduncle very short. (All RHS colour chart numbers refer to 2001 edition.) PBR Certificate Number 2641, Application Number 2002/305, granted 24 February 2005.
Resumo:
Spontaneous mutation: In 1996, vegetative material (later designated ‘TL2’) taken from a disease resistant mutant plant on the fifteenth green at Novotel Palm Cove resort course near Cairns was included an on-going program of selection and testing of promising ‘Tifgreen’ mutants by Tropical Lawns Pty Ltd. Selection criteria: healthy vigorous growth during the tropical wet season, dense fine-textured appearance under close mowing, and dark green leaves. In subsequent trials, ‘TL2’ was identified as the outstanding plant among selections of mutant ‘Tifgreen’ genotypes from other north Queensland sites in terms of colour, texture and density for greens use. Propagation: vegetative. Breeder: Terry Anderlini, Gordonvale, QLD. PBR Certificate Number 2639, Application Number 2002/268, granted 24 February 2005.
Resumo:
Chance seedling: observed in about 1989 as a distinctly coarser textured, densely matting, darker green mutant bermuda grass plant growing among the hybrid ‘Tifgreen’ on the eighth green at the Townsville Golf Course. Although ‘TL1’ was selected from a sward of the hybrid Bermuda grass ‘Tifgreen’, its inflorescence structure (4, not 3, racemes per inflorescence), agronomic attributes (e.g. its tolerance to certain herbicides), and its DNA profile are consistent with a chance seedling of Cynodon dactylon rather than a mutant plant of hybrid (C. dactylon x transvaalensis) origin. Selection criteria: exceptionally short stolon internodes resulting in an extremely tight knit stolon mat under close (c. 5-6 mm) but not very close (c. 3-4 mm) mowing; very deep, strong rhizome system; very dark green colour; tolerates shade better than other Australian bermuda grass varieties of common knowledge (except for ‘Plateau’A); and remains low growing under heavy tropical cloud cover even after 6-8 months. Designated ‘TL1’ by Tropical Lawns Pty Ltd and trialed successfully during the late 1990s and early 2000s in high wear situations (e.g. golf tees) in north Queensland. Propagation: vegetative. Breeder: Barry McDonagh, Townsville, QLD. PBR Certificate Number 2638, Application Number 2002/267, granted 24 February 2005.
Resumo:
Spontaneous mutation or chance seedling: discovered in 2001 as a superior plant growing among “Common” green couch on the breeder’s turf farm at Berries Road, Childers. A selected piece of sod was removed and broken into vegetative sprigs to propagate a larger area of this variety elsewhere on the breeder’s property. The original plant has now been multiplied vegetatively three times without showing any discernible off types. Selection criteria: dense prostrate habit and limited inflorescence production (giving a low mowing requirement), high turf quality, dark green colour. Propagation: vegetative. Breeder: Robert William Morrow, Childers, QLD. PBR Certificate Number 2844, Application Number 2004/035, granted 22 August 2005.
Resumo:
‘Grand Prix’ is a selection from a cross between ‘Wintergreen’ and ‘Couch 5’ (also designated C5). ‘Couch 5’ was a selection from an earlier series of crosses by the breeder between ‘Wintergreen’ and a number of Cynodon dactylon accessions, which were collected by the breeder from the Mornington Peninsula area of Victoria between 1986 and 1990. C5 was an experimental breeding line, and was not subsequently reserved as vegetative germplasm. Living material of C5 is no longer in existence. Following the crossing of ‘Couch 5’ and ‘Wintergreen’ in 1998, the resultant seed was germinated on moist blotting paper. Individual seedlings, a total of 150 in number, were planted into 150mm pots and these plants observed during 1998 and 1999. During the summer of 1999-2000, the majority of the seedling plants were culled on the basis of their shoot density, leaf texture, internode length, and colour. In the spring of 2000, the remaining 20 potted seedlings were planted individually into 4m2 plots at the Evergreen Turf farm at Pakenham (Victoria), and allowed to expand fully across these plots. The final selection of Seedling 12 (later designated DN12) in late 2002 was based on shoot density, leaf colour, turf quality, and reduced thatch accumulation as expressed in these plots. Propagation: the original plant has been multiplied through four (4) vegetative expansions prior to PBR application without showing any discernible off types. Breeder: David Nickson, Frankston, VIC. PBR Certificate Number 3133, Application Number 2005/291, granted 12 September 2006.
Resumo:
‘Winter Gem’ is a selection from a cross between ‘Wintergreen’ and Couch 5 (also designated C5). Couch 5 was a selection from an earlier series of crosses by the breeder between ‘Wintergreen’ and a number of Cynodon dactylon accessions, which were collected by the breeder from the Mornington Peninsula area of Victoria between 1986 and 1990. C5 was an experimental breeding line, and was not subsequently reserved as vegetative germplasm. Living material of C5 is no longer in existence. Following the crossing of Couch 5 and ‘Wintergreen’ in 1998, the resultant seed was germinated on moist blotting paper. Individual seedlings, a total of 150 in number, were planted into 150mm pots and these plants observed during 1998 and 1999. During the summer of 1999-2000, the majority of the seedling plants were culled on the basis of their shoot density, leaf texture, internode length, and colour. In the spring of 2000, the remaining 20 potted seedlings were planted individually into 4m2 plots at the Evergreen Turf farm at Pakenham (Victoria), and allowed to expand fully across these plots. The final selection of Seedling 9 (later designated DN9) in late 2002 was based on shoot density, leaf texture, and retention of winter colour as expressed in these plots. Propagation: The original plant had been multiplied through four (4) vegetative expansions prior to PBR application without showing any discernible off types. Breeder: David Nickson, Frankston, VIC. PBR Certificate Number 3132, Application Number 2005/290, granted 11 September 2006.
Resumo:
‘P18’ was first produced in 1992 and is a mutant genotype obtained from a hybrid Bermudagrass line believed to be ‘Tifdwarf’, which was grown in a greenhouse owned by H&H Seed Company in Yuma, Arizona. ‘P18’ was selected for its extremely fine leaf texture, its high shoot density under close mowing, its rapid growth rate, and its uniform dark green colour, and was subsequently evaluated for these traits and characteristics. Propagation: vegetative. Breeder: Howard E. Kaewer, Eden Prairie, MN, USA. PBR Application Number 2007/179, Certificate Number 3567, granted 13 August 2007.
Resumo:
‘AGRD’ was selected by the breeder, Dr Warren Hunt, from a variant area of winter active turf (probably ‘Tifway’ or ‘Tifgreen’) on a Hong Kong Golf Course in Apr 1996. A selection of this material was imported through vegetative quarantine to New Zealand for evaluation. Following a favourable assessment of its potential as a warm-season turfgrass variety under New Zealand conditions made based on its superior comparative performance relative to other Cynodon accessions in glasshouse and field trials, the New Zealand registered variety ‘Grasslands AgRiDark’ was released in 1999. PBR Certificate Number 3716, Application Number 2004/299, granted 20 January 2009.
Resumo:
In grassland reserves, managed disturbance is often necessary to maintain plant species diversity. We carried out experiments to determine the impact of fire, kangaroo grazing, mowing and disc ploughing on grassland species richness and composition in a nature reserve in semi-arid eastern Australia. Vegetation response was influenced by winter-spring drought after establishment of the experiments, but moderate rainfall followed in late summer-autumn. Species composition varied greatly between sampling times, and the variability due to rainfall differences between seasons and years was greater than the effects of fire, kangaroo grazing, mowing or disc ploughing. In the fire experiment, species richness and composition recovered more rapidly after spring than autumn burning. Species richness and composition were similar to control sites within 12 months of burning and mowing, suggesting that removal of the dominant grass canopy is unnecessary to enhance plant diversity. Two fires (separated by 3 years) and post-fire kangaroo grazing had only minor influence on species richness and composition. Even disc ploughing caused only a small reduction in native richness. The minor impact of ploughing was explained by the small areas that were ploughed, the once-off nature of the treatment, and the high degree of natural movement and cracking in these shrink-swell soils. Recovery of the composition and richness of these grasslands was rapid because of the high proportion of perennial species that resprout vegetatively after fire and mowing. There appears to be little conservation benefit from fire, mowing or ploughing ungrazed areas, as we could identify no native plant species dependent on frequent disturbance for persistence in this grassland community. However, the ability of the Astrebla- and Dichanthium-dominated grasslands to recover quickly after disturbance, given favourable seasonal conditions, suggests that they are well adapted to natural disturbances (e.g. droughts, fire, flooding and native grazing).
Resumo:
We compared daily net radiation (Rn) estimates from 19 methods with the ASCE-EWRI Rn estimates in two climates: Clay Center, Nebraska (sub-humid) and Davis, California (semi-arid) for the calendar year. The performances of all 20 methods, including the ASCE-EWRI Rn method, were then evaluated against Rn data measured over a non-stressed maize canopy during two growing seasons in 2005 and 2006 at Clay Center. Methods differ in terms of inputs, structure, and equation intricacy. Most methods differ in estimating the cloudiness factor, emissivity (e), and calculating net longwave radiation (Rnl). All methods use albedo (a) of 0.23 for a reference grass/alfalfa surface. When comparing the performance of all 20 Rn methods with measured Rn, we hypothesized that the a values for grass/alfalfa and non-stressed maize canopy were similar enough to only cause minor differences in Rn and grass- and alfalfa-reference evapotranspiration (ETo and ETr) estimates. The measured seasonal average a for the maize canopy was 0.19 in both years. Using a = 0.19 instead of a = 0.23 resulted in 6% overestimation of Rn. Using a = 0.19 instead of a = 0.23 for ETo and ETr estimations, the 6% difference in Rn translated to only 4% and 3% differences in ETo and ETr, respectively, supporting the validity of our hypothesis. Most methods had good correlations with the ASCE-EWRI Rn (r2 > 0.95). The root mean square difference (RMSD) was less than 2 MJ m-2 d-1 between 12 methods and the ASCE-EWRI Rn at Clay Center and between 14 methods and the ASCE-EWRI Rn at Davis. The performance of some methods showed variations between the two climates. In general, r2 values were higher for the semi-arid climate than for the sub-humid climate. Methods that use dynamic e as a function of mean air temperature performed better in both climates than those that calculate e using actual vapor pressure. The ASCE-EWRI-estimated Rn values had one of the best agreements with the measured Rn (r2 = 0.93, RMSD = 1.44 MJ m-2 d-1), and estimates were within 7% of the measured Rn. The Rn estimates from six methods, including the ASCE-EWRI, were not significantly different from measured Rn. Most methods underestimated measured Rn by 6% to 23%. Some of the differences between measured and estimated Rn were attributed to the poor estimation of Rnl. We conducted sensitivity analyses to evaluate the effect of Rnl on Rn, ETo, and ETr. The Rnl effect on Rn was linear and strong, but its effect on ETo and ETr was subsidiary. Results suggest that the Rn data measured over green vegetation (e.g., irrigated maize canopy) can be an alternative Rn data source for ET estimations when measured Rn data over the reference surface are not available. In the absence of measured Rn, another alternative would be using one of the Rn models that we analyzed when all the input variables are not available to solve the ASCE-EWRI Rn equation. Our results can be used to provide practical information on which method to select based on data availability for reliable estimates of daily Rn in climates similar to Clay Center and Davis.
Resumo:
Coastal seagrass habitats in tropical and subtropical regions support aggregations of resident green turtles (Chelonia mydas) from several genetically distinct breeding populations. Migration of individuals to their respective dispersed breeding sites provides a complex pattern of migratory connectivity among nesting and feeding habitats of this species. An understanding of this pattern is important in regions where the persistence of populations is under threat from anthropogenic impacts. The present study uses mitochondrial DNA and mixed-stock analyses to assess the connectivity among seven feeding grounds across the north Australian coast and adjacent areas and 17 genetically distinct breeding populations from the Indo-Pacific region. It was hypothesised that large and geographically proximate breeding populations would dominate at nearby feeding grounds. As expected, each sampled feeding area appears to support multiple breeding populations, with two aggregations dominated by a local breeding population. Geographic distance between breeding and feeding habitat strongly influenced whether a breeding population contributed to a feeding ground (wi = 0.654); however, neither distance nor size of a breeding population was a good predictor of the extent of their contribution. The differential proportional contributions suggest the impact of anthropogenic mortality at feeding grounds should be assessed on a case-by-case basis.
Resumo:
This project built upon the successful outcomes of a previous project (TU02005) by adding to the database of salt tolerance among warm season turfgrass cultivars, through further hydroponic screening trials. Hydroponic screening trials focussed on new cultivars or cultivars that were not possible to cover in the time available under TU02005, including: 11 new cultivars of Paspalum vaginatum; 13 cultivars of Cynodon dactylon; six cultivars of Stenotaphrum secundatum; one accession of Cynodon transvaalensis; 12 Cynodon dactylon x transvaalensis hybrids; two cultivars of Sporobolus virginicus; five cultivars of Zoysia japonica; one cultivar of Z. macrantha, one common form of Z. tenuifolia and one Z. japonica x tenuifolia hybrid. The relative salinity tolerance of different turfgrasses is quantified in terms of their growth response to increasing levels of salinity, often defined by the salt level that equates to a 50% reduction in shoot yield, or alternatively the threshold salinity. The most salt tolerant species in these trials were Sporobolus virginicus and Paspalum vaginatum, consistent with the findings from TU02005 (Loch, Poulter et al. 2006). Cynodon dactylon showed the largest range in threshold values with some cultivars highly sensitive to salt, while others were tolerant to levels approaching that of the more halophytic grasses. Coupled with the observational and anecdotal evidence of high drought tolerance, this species and other intermediately tolerant species provide options for site specific situations in which soil salinity is coupled with additional challenges such as shade and high traffic conditions. By recognising the fact that a salt tolerant grass is not the complete solution to salinity problems, this project has been able to further investigate sustainable long-term establishment and management practices that maximise the ability of the selected grass to survive and grow under a particular set of salinity and usage parameters. Salt-tolerant turf grasses with potential for special use situations were trialled under field conditions at three sites within the Gold Coast City Council, while three sites, established under TU02005 within the Redland City Council boundaries were monitored for continued grass survival. Several randomised block experiments within Gold Coast City were established to compare the health and longevity of seashore paspalum (Paspalum vaginatum), Manila grass (Zoysia matrella), as well as the more tolerant cultivars of other species like buffalo grass (Stenotaphrum secundatum) and green couch (Cynodon dactylon). Whilst scientific results were difficult to achieve in the field situation, where conditions cannot be controlled, these trials provided valuable observational evidence of the likely survival of these species. Alternatives to laying full sod such as sprigging were investigated, and were found to be more appropriate for areas of low traffic as the establishment time is greater. Trials under controlled and protected conditions successfully achieved a full cover of Paspalum vaginatum from sprigs in a 10 week time frame. Salt affected sites are often associated with poor soil structure. Part of the research investigated techniques for the alleviation of soil compaction frequently found on saline sites. Various methods of soil de-compaction were investigated on highly compacted heavy clay soil in Redlands City. It was found that the heavy duplex soil of marine clay sediments required the most aggressive of treatments in order to achieve limited short-term effects. Interestingly, a well constructed sports field showed a far greater and longer term response to de-compaction operations, highlighting the importance of appropriate construction in the successful establishment and management of turfgrasses on salt affected sites. Fertiliser trials in this project determined plant demand for nitrogen (N) to species level. This work produced data that can be used as a guide when fertilising, in order to produce optimal growth and quality in the major turf grass species used in public parkland. An experiment commenced during TU02005 and monitored further in this project, investigated six representative warm-season turfgrasses to determine the optimum maintenance requirements for fertiliser N in south-east Queensland. In doing so, we recognised that optimum level is also related to use and intensity of use, with high profile well-used parks requiring higher maintenance N than low profile parks where maintaining botanical composition at a lower level of turf quality might be acceptable. Kikuyu (Pennisetum clandestinum) seemed to require the greatest N input (300-400 kg N/ha/year), followed by the green couch (Cynodon dactylon) cultivars ‘Wintergreen’ and ‘FLoraTeX’ requiring approximately 300 kg N/ha/year for optimal condition and growth. ‘Sir Walter’ (Stenotaphrum secundatum) and ‘Sea Isle 1’ (Paspalum vaginatum) had a moderate requirement of approximately 200 kg/ha/year. ‘Aussiblue’ (Digitaria didactyla)maintained optimal growth and quality at 100-200 kg N/ha/year. A set of guidelines has been prepared to provide various options from the construction and establishment of new grounds, through to the remediation of existing parklands by supporting the growth of endemic grasses. They describe a best management process through which salt affected sites should be assessed, remediated and managed. These guidelines, or Best Management Practices, will be readily available to councils. Previously, some high salinity sites have been turfed several times over a number of years (and Council budgets) for a 100% failure record. By eliminating this budgetary waste through targeted workable solutions, local authorities will be more amenable to investing appropriate amounts into these areas. In some cases, this will lead to cost savings as well as resulting in better quality turf. In all cases, however, improved turf quality will be of benefit to ratepayers, directly through increased local use of open space in parks and sportsfields and indirectly by attracting tourists and other visitors to the region bringing associated economic benefits. At the same time, environmental degradation and erosion of soil in bare areas will be greatly reduced.
Resumo:
This project will provide information, germplasm, selection techniques and strategies for breeders to develop high-yielding stay-green wheat cultivars for Australian growers via a "three pronged" research strategy.
Resumo:
Identifying candidate genes for drought adaptation in sorghum.
Resumo:
The stay-green drought adaptation mechanism has been widely promoted as a way of improving grain yield and lodging resistance in sorghum [Sorghum bicolor (L.) Moench] and as a result has been the subject of many physiological and genetic studies. The relevance of these studies to elite sorghum hybrids is not clear given that they sample a limited number of environments and were conducted using inbred lines or relatively small numbers of experimental F-1 hybrids. In this study we investigated the relationship between stay-green and yield using data from breeding trials that sampled 1668 unique hybrid combinations and 23 environments whose mean yields varied from 2.3 to 10.5 t ha(-1). The strength and direction of the association between stay-green and grain yield varied with both environment and genetic background (male tester). The majority of associations were positive, particularly in environments with yields below 6 t ha(-1). As trial mean yield increased above 6 t ha(-1) there was a trend toward an increased number of negative associations; however, the number and magnitude of the positive associations were larger. Given that post-flowering drought is very commonly experienced by sorghum crops world wide and average yields are 1.2 and 2.5 t ha(-1) for the world and Australia, respectively, our results indicate that selection for stay-green in elite sorghum hybrids may be broadly beneficial for increasing yield in a wide range of environments.