40 resultados para Gaseous diffusion plants.
Resumo:
Invasive plants are regarded as a major threat to biodiversity worldwide. Yet, in some cases, invasive plants now perform important ecological functions. For example, fleshy-fruited invasive plants provide food that supports indigenous frugivore populations. How can the disparate goals of conservation versus invasive weed control be managed? We suggest using the fruit characteristics of the invasive plant to select replacement indigenous plants that are functionally similar from the perspective of frugivores. These could provide replacement food resources at sites where plants with these characteristics are part of the goal plant community and where such plants would not otherwise regenerate. Replacement plants could also redirect seed dispersal processes to favour indigenous, rather than invasive, plant species. We investigated the utility of this approach by ranking all indigenous fleshy-fruited plant species from a region using a simple model that scored species based upon measures of fruit phenology, morphology, conspicuousness and accessibility relative to a target invasive species, Lantana (Lantana camara). The model successfully produced high scores for indigenous plant species that were used by more of the frugivores of Lantana than a random selection of plants, suggesting that this approach warrants further investigation.
Resumo:
Aim: Birds play a major role in the dispersal of seeds of many fleshy-fruited invasive plants. The fruits that birds choose to consume are influenced by fruit traits. However, little is known of how the traits of invasive plant fruits contribute to invasiveness or to their use by frugivores. We aim to gain a greater understanding of these relationships to improve invasive plant management. Location: South-east Queensland, Australia. Methods: We measure a variety of fruit morphology, pulp nutrient and phenology traits of a suite of bird-dispersed alien plants. Frugivore richness of these aliens was derived from the literature. Using regressions and multivariate methods, we investigate relationships between fruit traits, frugivore richness and invasiveness. Results: Plant invasiveness was negatively correlated to fruit size, and all highly invasive species had quite similar fruit morphology [smaller fruits, seeds of intermediate size and few (<10) seeds per fruit]. Lower pulp water was the only pulp nutrient trait associated with invasiveness. There were strong positive relationships between the diversity of bird frugivores and plant invasiveness, and in the diversity of bird frugivores in the study region and another part of the plants' alien range. Main conclusions: Our results suggest that weed risk assessments (WRA) and predictions of invasive success for bird-dispersed plants can be improved. Scoring criteria for WRA regarding fruit size would need to be system-specific, depending on the fruit-processing capabilities of local frugivores. Frugivore richness could be quantified in the plant's natural range, its invasive range elsewhere, or predictions made based on functionally similar fruits.
Resumo:
This paper reports a field study undertaken to determine if the foliar application of herbicides fluroxypyr (150 mL 100 L-1 a.i.) and metsulfuron-methyl (12 g 100 L-1 a.i.) were capable of reducing the germination and viability of Chromolaena odorata (L.) R.M.King & H.Rob. (Siam weed) seeds at three different stages of maturity. After foliar application of fluroxypyr germination of mature seeds was reduced by 88% and intermediate and immature seeds were reduced by 100%, compared to the control. Fluroxypyr also reduced the viability of mature, intermediate and immature seeds by 79, 89 and 67% respectively, compared to the control. Metsulfuron-methyl reduced germination of intermediate and immature seeds by 53 and 99% respectively compared to the control. Viability was also reduced by 74 and 96% respectively, compared to the control. Mature seeds were not affected by metsulfuron-methyl as germination and viability increased by 2% and 1% respectively, as compared to the control. These results show that these herbicides are capable of reducing the amount of viable seed entering the seed bank. However depending on the treatment and stage of seed development a percentage of seeds on the plants will remain viable and contribute to the seed bank. This information is of value to Siam weed eradication teams as plants are most easily located and subsequently treated at the time of flowering. Knowledge of the impact of control methods on seeds at various stages of development will help determine the most suitable chemical control option for a given situation.
Resumo:
Vertebrates play a major role in dispersing seeds of fleshy-fruited alien plants. However, we know little of how the traits of alien fleshy fruits compare with indigenous fleshy fruits, and how these differences might contribute to invasion success. In this study, we characterised up to 38 fruit morphology, pulp nutrient and phenology traits of an assemblage of 34 vertebrate-dispersed alien species in south-eastern Queensland, Australia. Most alien fruits were small (81%\15 mm in mean width), and had watery fruit pulps that were high in sugars and low in nitrogen and lipids. When compared to indigenous species, alien fruits had significantly smaller seeds. Further, alien fruit pulps contained more sugar and more variable (and probably greater) nitrogen per pulp wet weight, and species tended to have longer fruiting seasons than indigenous species. Our analyses suggest that fruit traits could be important in determining invasiveness and could be used to improve pre- and post-border weed risk assessment.
Resumo:
Aim: Resolving the origin of invasive plant species is important for understanding the introduction histories of successful invaders and aiding strategies aimed at their management. This study aimed to infer the number and origin(s) of introduction for the globally invasive species, Macfadyena unguis-cati and Jatropha gossypiifolia using molecular data. Location: Native range: Neotropics; Invaded range: North America, Africa, Europe, Asia, Pacific Islands and Australia. Methods: We used chloroplast microsatellites (cpSSRs) to elucidate the origin(s) of introduced populations and calculated the genetic diversity in native and introduced regions. Results: Strong genetic structure was found within the native range of M. unguis-cati, but no genetic structuring was evident in the native range of J. gossypiifolia. Overall, 27 haplotypes were found in the native range of M. unguis-cati. Only four haplotypes were found in the introduced range, with more than 96% of introduced specimens matching a haplotype from Paraguay. In contrast, 15 haplotypes were found in the introduced range of J. gossypiifolia, with all invasive populations, except New Caledonia, comprising multiple haplotypes. Main conclusions: These data show that two invasive plant species from the same native range have had vastly different introduction histories in their non-native ranges. Invasive populations of M. unguis-cati probably came from a single or few independent introductions, whereas most invasive J. gossypiifolia populations arose from multiple introductions or alternatively from a representative sample of genetic diversity from a panmictic native range. As introduced M. unguis-cati populations are dominated by a single haplotype, locally adapted natural enemies should make the best control agents. However, invasive populations of J. gossypiifolia are genetically diverse and the selection of bio-control agents will be considerably more complex.
Resumo:
The productivity of containerized and bare-rooted plants of strawberry (Fragaria * ananassa) was investigated over 4 years in southeastern Queensland, Australia. In the first experiment, plants in small, 75-cm3 cells were compared with bare-rooted plants of 'Festival' and 'Sugarbaby'. A similar experiment was conducted in year 2 with these two cultivars, plus 'Rubygem'. In year 3, plants in large, 125-cm3 cells were compared with small and large bare-rooted plants of 'Festival' and 'Rubygem'. Treatments in each of these experiments were planted on the same date. In the final experiment, plants in large cells and bare-rooted plants of 'Festival' were planted in late March, early April, mid-April, or early May. The plants grown in small cells produced 60% to 85% of the yields of the bare-rooted plants, whereas the yield of plants in large cells was equal to that of the bare-rooted plants. Containerized plants are twice as expensive as bare-rooted plants (A$0.60 vs. A$0.32) (A$=Australian dollar), and gave only similar or lower returns than the bare-rooted plants (A$0.54 to A$3.73 vs. A$1.40 to A$4.09). It can be concluded that containerized strawberry plants are not economically viable in subtropical Queensland under the current price structure and growing system. There was a strong relationship between yield and average plant dry weight (leaves, crowns, and roots) in 'Festival' in the last three experiments, where harvesting continued to late September or early October. Productivity increased by about 18 g for each gram increase in plant dry weight, indicating the dependence of fruit production on vegetative growth in this environment.
Resumo:
Ammonia (NH3) can accumulate in high density cattle accommodation during live export shipments and could potentially threaten the animals' health and welfare. The effects of 4 NH3 concentrations, control (<8), 15, 30, and 45 ppm, on the physiology and behavior of steers were recorded. The animals were held for 12 d under a micro-climate and stocking density similar to shipboard conditions experienced on voyages from Australia to the Middle East during the northern hemispheric summer. In bronchoalveolar lavage samples, ammonia increased (P < 0.05) macrophage activity in proportion to NH3 concentration and it increased (P < 0.05) neutrophil percentage at 30 and 45 ppm, indicating active pulmonary inflammation. It also increased (P < 0.05) lacrimation, nasal secretions and coughing, particularly at 45 ppm, indicating that the NH3 was irritating the mucous membranes of the eyes, nasal cavity and respiratory tract. Ammonia had no effect (P > 0.05) on hematological parameters or body weight. Twenty-eight days after exposure to NH3, the steers' pulmonary macrophage activity and neutrophil levels had returned to normal. It was concluded that ammonia concentrations of 30 and 45 ppm induced temporary inflammatory responses which indicate an adverse effect on the welfare of steers.
Resumo:
This paper quantifies gaseous N losses due to ammonia volatilisation and denitrification under controlled conditions at 30 degrees C and 75% to 150% of Field Capacity (FC). Biosolids were mixed with two contrasting soils from subtropical Australia at a rate designed to meet crop N requirements for irrigated cotton or maize (i.e., equivalent to 180 kg N ha(-1)). In the first experiment, aerobically (AE) and anaerobically (AN) digested biosolids were mixed into a heavy Vertosol soil and then incubated for 105 days. Ammonia volatilization over 72 days accounted for less than 4% of the applied NH4-N but 24% (AN) to 29% (AE) of the total applied biosolids' N was lost through denitrification in 105 days. In the second experiment AN biosolids with and without added polyacrimide polymer were mixed with either a heavy Vertosol or a lighter Red Ferrosol and then incubated for 98 days. The N loss was higher from the Vertosol with 16-29% of total N applied versus the Red Ferrosol with 7-10% of total N applied, while addition of polymer to the biosolids increased N loss from 7 to 10% and from 16 to 29% in the Red Ferrosol and Vertosol, respectively. A major product from the denitrification process was N-2 gas, accounting for >90% of the emitted N gases from both experiments. Our findings demonstrate that denitrification could be a major pathway of gaseous N losses under warm and moist conditions.
Resumo:
This chapter describes poisoning associated with consumption of pyrrolizidine alkaloid (PA)-containing plants (Crotalaria spp., Heliotropium spp. and Senecio spp.) by cattle and horses in rangelands of northern Australia, as well as the risks for meat quality of PA residues and potential health hazards to consumers.
Resumo:
This book provides for the first time a detailed host list for all the fruit fly species (Tephritidae) known from Australia. It includes available distribution, male lure and host plant information for the 278 species currently recorded from Australia (including Torres Strait Islands but excluding Christmas and Cocos (Keeling) islands in the Indian Ocean). This total includes 269 described species plus nine undescribed species of Tephritinae. Thirteen fruit fly specialists from throughout Australia collaborated with QDPI in the production of this book. It provides an invaluable reference source for anyone involved in fruit fly research, ecological studies, pre- and post-harvest control, regulation, quarantine and market access.
Resumo:
The effect of time of planting and plant size on the performance of ‘Festival’ and ‘Florida Fortuna’ strawberry (Fragaria ×ananassa) plants was studied at Nambour in southeastern Queensland, Australia, over 2 years. The main objective of the work was to determine whether small plants yielded proportionally less than large plants as planting was delayed. First, bare-rooted transplants of ‘Festival’ were divided into small (crown diameters ranging from 6 to 10 mm) or large plants (10 to 17 mm) and planted in late March, mid-April, or late April. Second, transplants of ‘Florida Fortuna’ were divided into small (5 to 8 mm) or large plants (8 to 17 mm) and planted in early April, mid-April, or early May. The early planting for each cultivar corresponded with the time that the transplants are first available from commercial strawberry nurseries. Yields were generally greater in plants planted in late March/early April compared with plants planted later. Differences in yield between the small and large plants were consistent across the different times of planting, with the small plants always having lower yields. Small transplants are an issue for the productivity of strawberry fields in this environment whether they are planted early or late. Producers should consider paying a premium for large transplants delivered early in the season.
Resumo:
Ammonia can accumulate in highly stocked sheep accommodation, for example during live export shipments, and could affect sheep health and welfare. Thus, the objective of this experiment was to test the effects of 4 NH3 concentrations, 4 (control), 12, 21, and 34 mg/m(3), on the physiology and behavior of wether sheep. Sheep were held for 12 d under a micro-climate and stocking density similar to shipboard conditions recorded on voyages from Australia to the Middle East during the northern hemispheric summer. Ammonia increased macrophage activity in transtracheal aspirations, indicating active pulmonary infl ammation; however, it had no effect (P > 0.05) on hematological variables. Feed intake decreased (P = 0.002) in proportion to ammonia concentration, and BW gain decreased (P < 0.001) at the 2 greatest concentrations. Exposure to ammonia increased (P = 0.03) the frequency of sneezing, and at the greatest ammonia concentration, sheep were less active, with less locomotion, pawing, and panting. Twenty-eight days after exposure to NH3, the pulmonary macrophage activity and BW of the sheep returned to that of sheep exposed to only 4 mg/m(3). It was concluded that NH3 induced a temporary inflammatory response of the respiratory system and reduced BW gain, which together indicated a transitory adverse effect on the welfare of sheep.
Resumo:
Australian cotton (Gossypium hirsutum L.) is predominantly grown on heavy clay soils (Vertosols). Cotton grown on Vertosols often experiences episodes of low oxygen concentration in the root-zone, particularly after irrigation events. In subsurface drip-irrigation (SDI), cotton receives frequent irrigation and sustained wetting fronts are developed in the rhizosphere. This can lead to poor soil diffusion of oxygen, causing temporal and spatial hypoxia. As cotton is sensitive to waterlogging, exposure to this condition can result in a significant yield penalty. Use of aerated water for drip irrigation (‘oxygation’) can ameliorate hypoxia in the wetting front and, therefore, overcome the negative effects of poor soil aeration. The efficacy of oxygation, delivered via SDI to broadacre cotton, was evaluated over seven seasons (2005–06 to 2012–13). Oxygation of irrigation water by Mazzei air-injector produced significantly (P < 0.001) higher yields (200.3 v. 182.7 g m–2) and water-use efficiencies. Averaged over seven years, the yield and gross production water-use index of oxygated cotton exceeded that of the control by 10% and 7%, respectively. The improvements in yields and water-use efficiency in response to oxygation could be ascribed to greater root development and increased light interception by the crop canopies, contributing to enhanced crop physiological performance by ameliorating exposure to hypoxia. Oxygation of SDI contributed to improvements in both yields and water-use efficiency, which may contribute to greater economic feasibility of SDI for broadacre cotton production in Vertosols.