31 resultados para Field evaluation
Resumo:
Survey methods were engaged to measure the change in use and knowledge of climate information by pastoralists in western Queensland. The initial mail survey was undertaken in 2000-01 (n=43) and provided a useful benchmark of pastoralists climate knowledge. Two years of climate applications activities were completed and clients were re-surveyed in 2003 (n=49) to measure the change in knowledge and assess the effectiveness of the climate applications activities. Two methods were used to assess changes in client knowledge, viz., self-assessment and test questions. We found that the use of seasonal climate forecasts in decision making increased from 36% in 2001 (n=42) to 51% in 2003 (n=49) (P=0.07). The self-assessment technique was unsatisfactory as a measure of changing knowledge over short periods (1-3 years), but the test question technique was successful and indicated an improvement in climate knowledge among respondents. The increased levels of use of seasonal climate forecasts in management and improved knowledge was partly attributed to the climate applications activities of the project. Further, those who used seasonal forecasting (n=25) didn't understand key components of forecasts (e.g. probability, median) better than those who didn't use seasonal forecasts (n=24) (P>0.05). This identifies the potential for misunderstanding and misinterpretation of forecasts among users and highlights the need for providers of forecasts to understand the difficulties and prepare simply written descriptions of forecasts and disseminate these with the maps showing probabilities. The most preferred means of accessing climate information were internet, email, 'The Season Ahead' newsletter and newspaper. The least preferred were direct contact with extension officers and attending field days and group meetings. Eighty-six percent of respondents used the internet and 67% used ADSL broadband internet (April 2003). Despite these findings, extension officers play a key role in preparing and publishing the information on the web, in emails and newsletters. We also believe that direct contact with extension officers trained in climate applications is desirable in workshop-like events to improve knowledge of the difficult concepts underpinning climate forecasts, which may then stimulate further adoption.
Resumo:
The introgression of domestic dog genes into dingo populations threatens the genetic integrity of 'pure' dingoes. However, dingo conservation efforts are hampered by difficulties in distinguishing between dingoes and hybrids in the field. This study evaluates consistency in the status of hybridisation (i.e. dingo, hybrid or dog) assigned by genetic analyses, skull morphology and visual assessments. Of the 56 south-east Queensland animals sampled, 39 (69.6%) were assigned the same status by all three methods, 10 (17.9%) by genetic and skull methods, four (7.1%) by genetic and visual methods; and two (3.6%) by skull and visual methods. Pair-wise comparisons identified a significant relationship between genetic and skull methods, but not between either of these and visual methods. Results from surveying 13 experienced wild dog managers showed that hybrids were more easily identified by visual characters than were dingoes. A more reliable visual assessment can be developed through determining the relationship between (1) genetics and phenotype by sampling wild dog populations and (2) the expression of visual characteristics from different proportions and breeds of domestic dog genes by breeding trials. Culling obvious hybrids based on visual characteristics, such as sable and patchy coat colours, should slow the process of hybridisation.
Resumo:
Coccidiosis is an economically important parasitic disease of chickens that, in Australia, is caused by seven species of the genus Eimeria.1 The disease has traditionally been controlled by prophylactic drugs, but vaccination with attenuated lines of the parasites2–4 is rapidly gaining acceptance world wide. Live Eimeria vaccines are produced in batches which are not frozen and have a limited shelf life. The per cent infectivity of vaccine seed stocks and the vaccines produced from them must therefore be accurately monitored using standardised dose dependant assays to ensure that shelf life, quality control and vaccine release specifications are met. Infectivity for the chicken host cannot readily be determined by microscopic observation of oocysts or sporocyst hatching.5 Dose dependent parameters such as body weight gain, feed conversion ratio, visual lesion scores, mortality, oocysts production, clinical symptoms and microscopic lesion counts could be used as measures of infectivity.6–11 These parameters show significant dose dependant effects with field strains, but lines of vaccine parasites that have been selected for precocious development with associated reduced virulence and reproductive capability may not have the same effect.3,4 The aim of this trial was to determine which parameters provide the most effective measures of infective dose in birds inoculated with a precocious vaccine strain.
Resumo:
Manure additive products can be used to reduce odour emissions (OE) from livestock farms. The standardised evaluation of these manure additive products under specific farm conditions is important. In this study, the efficacy of a manure additive (WonderTreat(TM), CKLS, Inc., Hong-Kong) was assessed under Australian conditions utilising a combination of laboratory and field-scale evaluation techniques. As a first step, the efficacy of the manure additive was assessed in a laboratory-scale trial using a series of uniformly managed digesters and standard odour, liquor ammonia and hydrogen sulphide concentration measurement procedures. This showed that the addition of WonderTreat(TM) at the 'low dose rate' (LDR) (102.6 g m-2) used during the trial significantly, but only marginally (30%; P = 0.02) reduced the OE rate (mean 13.9 OU m-2 s-1) of anaerobic pig liquor relative to an untreated control (UC) (19.9 OU m-2 s-1). However, the 'high dose rate' (HDR) (205.3 g m-2) also assessed during the trial preformed similarly (19.7 OU m-2 s-1) to the UC. No statistically significant difference in the concentrations of a range of measured water quality variables at the 5% level was observed between the treatments or controls digesters. As a second step, a field-scale assessment of the manure additive was undertaken at a commercial piggery. Two piggery manure lagoons (each with approximately 2500 m2 surface area) were included in the study; one was treated with WonderTreat(TM) while the other was used as control. The efficacy of the treatment was assessed using olfactometric evaluation of odour samples collected from the surface of the pond using a dynamic wind tunnel and ancillary equipment. No statistically significant reduction in OE rate could be demonstrated (P = 0.35), partially due to the limited number of samples taken during the assessment. However, there was a numerical reduction in the average OE rate of the treatment pond (29 OU m-2 s-1 at 1 m s-1) compared to the control lagoon (38 OU m-2 s-1 at 1 m s-1).
Resumo:
In classical weed biological control, assessing weed response to simulated herbivory is one option to assist in the prioritization of available agents and prediction of their potential efficacy. Previously reported simulated herbivory studies suggested that a specialist herbivore in the leaf-feeding guild is desirable as an effective biological control agent for cat's claw creeper Macfadyena unguis-cati (Bignoniaceae), an environmental weed that is currently a target for biological control. In this study, we tested (i) whether the results from glasshouse-based simulated herbivory can be used to prioritise potential biological control agents by evaluating the impact of a leaf-sucking tingid bug Carvalhotingis visenda (Drake & Hambleton) (Hemiptera: Tingidae) in quarantine; and (ii) the likely effectiveness of low- and high-densities of the leaf-sucking tingid after its release in the field. The results suggest that a single generation of C. visenda has the potential to reduce leaf chlorophyll content significantly, resulting in reduced plant height and leaf biomass. However, the impact of one generation of tingid herbivory on below-ground plant components, including the roots and tuber size and biomass, were not significant. These findings are consistent with results obtained from a simulated herbivory trial, highlighting the potential role of simulated herbivory studies in agent prioritisation.
Resumo:
Insecticides are used by growers to control Frankliniella occidentalis (western flower thrips) in Australian vegetable crops. However, limited information was available on the efficacy of some insecticides used against F. occidentalis and data on new insecticides that could be included in a resistance management program were required. The efficacy of 16 insecticides in controlling F. occidentalis was tested in four small plot trials in chillies and capsicums. Spinosad, fipronil and methamidophos were effective against adults and larvae. Spirotetramat had no efficacy against adults but was very effective against larvae. Pyridalyl was moderately effective against larvae. Methidathion showed limited effectiveness. Abamectin, amorphous silica, bifenthrin, chlorpyrifos, dimethoate, emamectin benzoate, endosulfan, imidacloprid, methomyl and insecticidal soap were not effective. Laboratory bioassays on F. occidentalis collected from the field trials showed resistance to bifenthrin but not to the other insecticides tested. The trials demonstrated that some insecticides permitted for use against F. occidentalis are not effective and identified a number of insecticides, including the new ones spirotetramat and pyridalyl, that are effective and that could be used to manage the pest within a resistance management program.
Resumo:
In Queensland, Australia, strawberries (Fragaria xananassa Duchesne) are grown in open fields and rainfall events can damage fruit. Cultivars that are resistant to rain damage may reduce losses and lower risk for the growers. However, little is known about the genetic control of resistance and in a subtropical climate, unpredictable rainfall events hamper evaluation. Rain damage was evaluated on seedling and clonal trials of one breeding population comprising 645 seedling genotypes and 94 clones and on a second clonal population comprising 46 clones from an earlier crossing to make preliminary estimates of heritability. The incidence of field damage from rainfall and damage after laboratory soaking was evaluated to determine if this soaking method could be used to evaluate resistance to rain damage. Narrow-sense heritability of resistance to rain damage calculated for seedlings was low (0.21 +/- 0.15) and not significantly different from zero; however, broad-sense heritability estimates were moderate in both seedlings (0.49 +/- 0.16) and clones (0.45 +/- 0.08) from the first population and similar in clones (0.56 +/- 0.21) from the second population. Immersion of fruit in deionized water produced symptoms consistent with rain damage in the field. Lengthening the duration of soaking of 'Festival' fruit in deionized water exponentially increased the proportion of damage to fruit ranging in ripeness from immature to ripe during the first 6-h period of soaking. When eight genotypes were evaluated, the proportion of sound fruit after soaking in deionized water in the laboratory for up to 5 h was linearly related (r(2) = 0.90) to the proportion of sound fruit in the field after 89 mm of rain. The proportion of sound fruit of the breeding genotype '2008-208' and 'Festival' under soaking (0.67, 0.60) and field (0.52, 0.43) evaluations, respectively, is about the same and these genotypes may be useful sources of resistance to rain damage.
Resumo:
This project evaluated the timber quality, processing and performance characteristics of 19-year-old Eucalyptus cloeziana (Gympie messmate) and 15-year-old Eucalyptus pellita (red mahogany). Studies were undertaken to evaluate wood and mechanical properties, accelerated seasoning and veneer and plywood production. Above-ground and in-ground durability field tests were established at three locations in Queensland. Ground proixmity tests and L-joint tests were installed to gather data applicable to above-ground, weather-exposed end-use applications, and stake tests were installed to gather data applicable to in-ground, weather-exposed end-use applications.
Resumo:
Options for the integrated management of white blister (caused by Albugo candida) of Brassica crops include the use of well timed overhead irrigation, resistant cultivars, programs of weekly fungicide sprays or strategic fungicide applications based on the disease risk prediction model, Brassica(spot)(TM). Initial systematic surveys of radish producers near Melbourne, Victoria, indicated that crops irrigated overhead in the morning (0800-1200 h) had a lower incidence of white blister than those irrigated overhead in the evening (2000-2400 h). A field trial was conducted from July to November 2008 on a broccoli crop located west of Melbourne to determine the efficacy and economics of different practices used for white blister control, modifying irrigation timing, growing a resistant cultivar and timing spray applications based on Brassica(spot)(TM). Growing the resistant cultivar, 'Tyson', instead of the susceptible cultivar, 'Ironman', reduced disease incidence on broccoli heads by 99 %. Overhead irrigation at 0400 h instead of 2000 h reduced disease incidence by 58 %. A weekly spray program or a spray regime based on either of two versions of the Brassica(spot)(TM) model provided similar disease control and reduced disease incidence by 72 to 83 %. However, use of the Brassica(spot)(TM) models greatly reduced the number of sprays required for control from 14 to one or two. An economic analysis showed that growing the more resistant cultivar increased farm profit per ha by 12 %, choosing morning irrigation by 3 % and using the disease risk predictive models compared with weekly sprays by 15 %. The disease risk predictive models were 4 % more profitable than the unsprayed control.
Resumo:
Spinifex grasses are the dominant vegetative component in Australian grassland habitats, covering approximately 26% of the Australian landmass. Our ongoing work explores the utility of both the cellulosic and resinous components of this abundant biomass for modern applications and a potential economy for our Aboriginal collaborators. This study is focused on the optimisation of a resin extraction process using solvent, and the subsequent evaluation, via a field trial, of the potential use and efficacy of the resin as an anti-termite coating material. Termiticidal performance was evaluated by re-dissolving the extracted resin in acetone and coating on pine timber blocks. The resin-coated and control blocks were then exposed to a colony of Mastotermes darwiniensis’ (Froggatt) termites, which are the most primitive alive and destructive species in subterranean area, at a trial site in northeast Australia, for six months. The results clearly showed that spinifex resin effectively protected the timber from termite attack, while the uncoated control samples were extensively damaged. By demonstrating an enhanced termite resistance, we here report that plant resins that are produced by arid/semi-arid grasses could be potentially used as treatments to prevent termite attack.
Resumo:
The aim of this study was to validate a multiplex PCR for the species identification and serotyping of Actinobacillus pleuropneumoniae serovars 1, 5, 7, 12 and 15. All 15 reference strains and 411 field isolates (394 from Australia, 11 from Indonesia, five from Mexico and one from New Zealand) of A. pleuropneumoniae were tested with the multiplex PCR. The specificity of this multiplex PCR was validated on 26 non-A. pleuropneumoniae species. The multiplex PCR gave the expected results with all 15 serovar reference strains and agreed with conventional serotyping for all field isolates from serovars 1 (n = 46), 5 (n = 81), 7 (n = 80), 12 (n = 16) and serovar 15 (n = 117). In addition, a species-specific product was amplified in the multiplex PCR with all 411 A. pleuropneumoniae field isolates. Of 25 nontypeable field isolates only two did not yield a serovar-specific band in the multiplex PCR. This multiplex PCR for serovars 1, 5, 7, 12 and 15 is species specific and capable of serotyping isolates from diverse locations. Significance and Impact of the Study A multiplex PCR that can recognize serovars 1, 5, 7, 12 and 15 of A. pleuropneumoniae was developed and validated. This novel diagnostic tool will enable frontline laboratories to provide key information (the serovar) to guide targeted prevention and control programmes for porcine pleuropneumonia, a serious economic disease of pigs. The previous technology, traditional serotyping, is typically provided by specialized reference laboratories, limiting the capacity to respond to this key disease.
Resumo:
Retrospective identification of fire severity can improve our understanding of fire behaviour and ecological responses. However, burnt area records for many ecosystems are non-existent or incomplete, and those that are documented rarely include fire severity data. Retrospective analysis using satellite remote sensing data captured over extended periods can provide better estimates of fire history. This study aimed to assess the relationship between the Landsat differenced normalised burn ratio (dNBR) and field measured geometrically structured composite burn index (GeoCBI) for retrospective analysis of fire severity over a 23 year period in sclerophyll woodland and heath ecosystems. Further, we assessed for reduced dNBR fire severity classification accuracies associated with vegetation regrowth at increasing time between ignition and image capture. This was achieved by assessing four Landsat images captured at increasing time since ignition of the most recent burnt area. We found significant linear GeoCBI–dNBR relationships (R2 = 0.81 and 0.71) for data collected across ecosystems and for Eucalyptus racemosa ecosystems, respectively. Non-significant and weak linear relationships were observed for heath and Melaleuca quinquenervia ecosystems, suggesting that GeoCBI–dNBR was not appropriate for fire severity classification in specific ecosystems. Therefore, retrospective fire severity was classified across ecosystems. Landsat images captured within ~ 30 days after fire events were minimally affected by post burn vegetation regrowth.
Resumo:
Queensland fruit fly (Bactrocera tryoni) is a significant quarantine pest of stonefruit. To access domestic markets within Australia stonefruit require treatment to ensure they are free of fruit flies. Due to the recent restriction of the organophosphate pesticides, fenthion and dimethoate, the stonefruit industry now faces a significant challenge to control fruit flies. In this field trial we quantified the level of control achieved by a 'best case' systems approach that relied on currently available and registered control measures. This system included protein bait sprays, Male Annihilation Technique, insecticide cover sprays of trichlorfon, maldison and spinetoram and inspection and culling of damaged fruit. We found that in two out of the three trial orchards, packed fruit samples from Gatton (QLD) and Bangalow (NSW) had low levels of fruit fly infestation; 1.47 and 2.97% respectively. However, at the third property located at Alstonville (NSW) a high level of infestation (51.63%) was found in packed nectarines, which was likely attributed to the late implementation of the systems approach. This trial has demonstrated the potential for fruit fly control without relying on fenthion, however further modification of the system is needed to refine and increase efficacy.
Resumo:
The efficacy of chlorothalonil and paraffinic oil alone and in combinations with the registered fungicides propiconazole, tebuconazole, difenoconazole, epoxiconazole and pyrimethanil was evaluated in a field experiment over two cropping cycles in 2013 and 2014 in Northern Queensland, Australia, for control of yellow Sigatoka (caused by Mycosphaerella musicola) of banana. The predominantly applied by the banana industry treatment mancozeb with paraffinic oil was included for comparison. The results from the two cropping cycles suggested that all chemicals used with paraffinic oil were as effective or more effective than when applied with chlorothalonil, and chlorothalonil alone. Difenoconazole and epoxiconazole with paraffinic oil followed by propiconazole with paraffinic oil were the most effective treatments. Pyrimethanil and tebuconazole plus chlorothalonil were the least effective treatments. None of the chemical treatments was phytotoxic or reduced yield.
Resumo:
Queensland fruit flies Bactrocera tryoni and B. neohumeralis are considered major quarantine pests of tomato, a major crop in the horticultural production district around Bowen, North Queensland, Australia. Preharvest and/or postharvest treatments are required to meet the market access requirements of both domestic and international trading partners. The suspension from use of dimethoate and fenthion, the two insecticides used for fruit fly control, has resulted in the loss of both pre and postharvest uses in fresh tomato. Research undertaken quantitatively at Bowen evaluated the effectiveness of pre-harvest production systems without specific fruit fly controls and postharvest mitigation measures in reducing the risk of fruit fly infestation in tomato. A district-wide trapping using cue-lure baited traps was undertaken to determine fruit fly seasonal patterns in relation to the cropping seasons. A total of 17,626 field-harvested and 11,755 pack-house tomatoes were sampled from ten farms over three cropping seasons (2006-2009). The fruit were incubated and examined for fruit fly infestation. No fruit fly infested fruit were recorded over the three seasons in either the field or the pack-house samples. Statistical analyses showed that upper infestation levels were extremely low (between 0.025 and 0.062%) at the 95% confidence level. The trap catches showed a seasonal pattern in fruit fly activity, with low numbers during the autumn and winter months, rising slightly in spring and peaking in summer. This seasonal pattern was similar over the four seasons. The main two species of fruit fly caught were B. tryoni and B. neohumeralis. Based on the results, it is clear that the risk of fruit fly infestation is extremely low under the current production systems in the Bowen region.