34 resultados para Export by harvest


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ammonia (NH3) can accumulate in high density cattle accommodation during live export shipments and could potentially threaten the animals' health and welfare. The effects of 4 NH3 concentrations, control (<8), 15, 30, and 45 ppm, on the physiology and behavior of steers were recorded. The animals were held for 12 d under a micro-climate and stocking density similar to shipboard conditions experienced on voyages from Australia to the Middle East during the northern hemispheric summer. In bronchoalveolar lavage samples, ammonia increased (P < 0.05) macrophage activity in proportion to NH3 concentration and it increased (P < 0.05) neutrophil percentage at 30 and 45 ppm, indicating active pulmonary inflammation. It also increased (P < 0.05) lacrimation, nasal secretions and coughing, particularly at 45 ppm, indicating that the NH3 was irritating the mucous membranes of the eyes, nasal cavity and respiratory tract. Ammonia had no effect (P > 0.05) on hematological parameters or body weight. Twenty-eight days after exposure to NH3, the steers' pulmonary macrophage activity and neutrophil levels had returned to normal. It was concluded that ammonia concentrations of 30 and 45 ppm induced temporary inflammatory responses which indicate an adverse effect on the welfare of steers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strips within commercial crops of Stylosanthes guyanensis in the Mareeba district of north Queensland were sprayed with diquat 4, 6 and 10 days before harvest and compared with unsprayed strips. Pre-harvest desiccation made combine harvesting easier, but did not increase harvest yield. Where seed formation and maturation was still possible, desiccation prevented this without substantially increasing the loss of seed to the ground; increased harvest efficiency was thus offset by a diminished quantity of standing seed. However, where there was little or no further potential for seed development, diquat had virtually no effect on the quantity of standing seed or harvest efficiency. It was concluded that the results warranted neither recommendation nor further evaluation of preharvest desiccation of S. guyanensis seed crops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wheat grain industry is Australia's second largest agricultural export commodity. There is an increasing demand for accurate, objective and near real-time crop production information by industry. The advent of the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite platform has augmented the capability of satellite-based applications to capture reflectance over large areas at acceptable pixel scale, cost and accuracy. The use of multi-temporal MODIS-enhanced vegetation index (EVI) imagery to determine crop area was investigated in this article. Here the rigour of the harmonic analysis of time-series (HANTS) and early-season metric approaches was assessed when extrapolating over the entire Queensland (QLD) cropping region for the 2005 and 2006 seasons. Early-season crop area estimates, at least 4 months before harvest, produced high accuracy at pixel and regional scales with percent errors of -8.6% and -26% for the 2005 and 2006 seasons, respectively. In discriminating among crops at pixel and regional scale, the HANTS approach showed high accuracy. The errors for specific area estimates for wheat, barley and chickpea were 9.9%, -5.2% and 10.9% (for 2005) and -2.8%, -78% and 64% (for 2006), respectively. Area estimates of total winter crop, wheat, barley and chickpea resulted in coefficient of determination (R(2)) values of 0.92, 0.89, 0.82 and 0.52, when contrasted against the actual shire-scale data. A significantly high coefficient of determination (0.87) was achieved for total winter crop area estimates in August across all shires for the 2006 season. Furthermore, the HANTS approach showed high accuracy in discriminating cropping area from non-cropping area and highlighted the need for accurate and up-to-date land use maps. The extrapolability of these approaches to determine total and specific winter crop area estimates, well before flowering, showed good utility across larger areas and seasons. Hence, it is envisaged that this technology might be transferable to different regions across Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-Technical Summary Seafood CRC Project 2009/774. Harvest strategy evaluations and co-management for the Moreton Bay Trawl Fishery Principal Investigator: Dr Tony Courtney, Principal Fisheries Biologist Fisheries and Aquaculture, Agri-Science Queensland Department of Agriculture, Fisheries and Forestry Level B1, Ecosciences Precinct, Joe Baker St, Dutton Park, Queensland 4102 Email: tony.courtney@daff.qld.gov.au Project objectives: 1. Review the literature and data (i.e., economic, biological and logbook) relevant to the Moreton Bay trawl fishery. 2. Identify and prioritise management objectives for the Moreton Bay trawl fishery, as identified by the trawl fishers. 3. Undertake an economic analysis of Moreton Bay trawl fishery. 4. Quantify long-term changes to fishing power for the Moreton Bay trawl fishery. 5. Assess priority harvest strategies identified in 2 (above). Present results to, and discuss results with, Moreton Bay Seafood Industry Association (MBSIA), fishers and Fisheries Queensland. Note: Additional, specific objectives for 2 (above) were developed by fishers and the MBSIA after commencement of the project. These are presented in detail in section 5 (below). The project was an initiative of the MBSIA, primarily in response to falling profitability in the Moreton Bay prawn trawl fishery. The analyses were undertaken by a consortium of DAFF, CSIRO and University of Queensland researchers. This report adopted the Australian Standard Fish Names (http://www.fishnames.com.au/). Trends in catch and effort The Moreton Bay otter trawl fishery is a multispecies fishery, with the majority of the catch composed of Greasyback Prawns (Metapenaeus bennettae), Brown Tiger Prawns (Penaeus esculentus), Eastern King Prawns (Melicertus plebejus), squid (Uroteuthis spp., Sepioteuthis spp.), Banana Prawns (Fenneropenaeus merguiensis), Endeavour Prawns (Metapenaeus ensis, Metapenaeus endeavouri) and Moreton Bay bugs (Thenus parindicus). Other commercially important byproduct includes blue swimmer crabs (Portunus armatus), three-spot crabs (Portunus sanguinolentus), cuttlefish (Sepia spp.) and mantis shrimp (Oratosquilla spp.). Logbook catch and effort data show that total annual reported catch of prawns from the Moreton Bay otter trawl fishery has declined to 315 t in 2008 from a maximum of 901 t in 1990. The number of active licensed vessels participating in the fishery has also declined from 207 in 1991 to 57 in 2010. Similarly, fishing effort has fallen from a peak of 13,312 boat-days in 1999 to 3817 boat-days in 2008 – a 71% reduction. The declines in catch and effort are largely attributed to reduced profitability in the fishery due to increased operational costs and depressed prawn prices. The low prawn prices appear to be attributed to Australian aquacultured prawns and imported aquacultured vannamei prawns, displacing the markets for trawl-caught prawns, especially small species such as Greasyback Prawns which traditionally dominated landings in Moreton Bay. In recent years, the relatively high Australian dollar has resulted in reduced exports of Australian wild-caught prawns. This has increased supply on the domestic market which has also suppressed price increases. Since 2002, Brown Tiger Prawns have dominated annual reported landings in the Moreton Bay fishery. While total catch and effort in the bay have declined to historically low levels, the annual catch and catch rates of Brown Tiger Prawns have been at record highs in recent years. This appears to be at least partially attributed to the tiger prawn stock having recovered from excessive effort in previous decades. The total annual value of the Moreton Bay trawl fishery catch, including byproduct, is about $5 million, of which Brown Tiger Prawns account for about $2 million. Eastern King Prawns make up about 10% of the catch and are mainly caught in the bay from October to December as they migrate to offshore waters outside the bay where they contribute to a large mono-specific trawl fishery. Some of the Eastern King Prawns harvested in Moreton Bay may be growth overfished (i.e., caught below the size required to maximise yield or value), although the optimum size-at-capture was not determined in this study. Banana Prawns typically make up about 5% of the catch, but can exceed 20%, particularly following heavy rainfall. Economic analysis of the fishery From the economic survey, cash profits were, on average, positive for both fleet segments in both years of the survey. However, after the opportunity cost of capital and depreciation were taken into account, the residual owner-operator income was relatively low, and substantially lower than the average share of revenue paid to employed skippers. Consequently, owner-operators were earning less than their opportunity cost of their labour, suggesting that the fleets were economically unviable in the longer term. The M2 licensed fleet were, on average, earning similar boat cash profits as the T1/M1 fleet, although after the higher capital costs were accounted for the T1/M1 boats were earning substantially lower returns to owner-operator labour. The mean technical efficiency for the fleet as a whole was estimated to be 0.67. That is, on average, the boats were only catching 67 per cent of what was possible given their level of inputs (hours fished and hull units). Almost one-quarter of observations had efficiency scores above 0.8, suggesting a substantial proportion of the fleet are relatively efficient, but some are also relatively inefficient. Both fleets had similar efficiency distributions, with median technical efficiency score of 0.71 and 0.67 for the M2 and T1/M1 boats respectively. These scores are reasonably consistent with other studies of prawn trawl fleets in Australia, although higher average efficiency scores were found in the NSW prawn trawl fleet. From the inefficiency model, several factors were found to significantly influence vessel efficiency. These included the number of years of experience as skipper, the number of generations that the skipper’s family had been fishing and the number of years schooling. Skippers with more schooling were significantly more efficient than skippers with lower levels of schooling, consistent with other studies. Skippers who had been fishing longer were, in fact, less efficient than newer skippers. However, this was mitigated in the case of skippers whose family had been involved in fishing for several generations, consistent with other studies and suggesting that skill was passed through by families over successive generations. Both the linear and log-linear regression models of total fishing effort against the marginal profit per hour performed reasonably well, explaining between 70 and 84 per cent of the variation in fishing effort. As the models had different dependent variables (one logged and the other not logged) this is not a good basis for model choice. A better comparator is the square root of the mean square error (SMSE) expressed as a percentage of the mean total effort. On this criterion, both models performed very similarly. The linear model suggests that each additional dollar of average profits per hour in the fishery increases total effort by around 26 hours each month. From the log linear model, each percentage increase in profits per hour increases total fishing effort by 0.13 per cent. Both models indicate that economic performance is a key driver of fishing effort in the fishery. The effect of removing the boat-replacement policy is to increase individual vessel profitability, catch and effort, but the overall increase in catch is less than that removed by the boats that must exit the fishery. That is, the smaller fleet (in terms of boat numbers) is more profitable but the overall catch is not expected to be greater than before. This assumes, however, that active boats are removed, and that these were also taking an average level of catch. If inactive boats are removed, then catch of the remaining group as a whole could increase by between 14 and 17 per cent depending on the degree to which costs are reduced with the new boats. This is still substantially lower than historical levels of catch by the fleet. Fishing power analyses An analysis of logbook data from 1988 to 2010, and survey information on fishing gear, was performed to estimate the long-term variation in the fleet’s ability to catch prawns (known as fishing power) and to derive abundance estimates of the three most commercially important prawn species (i.e., Brown Tiger, Eastern King and Greasyback Prawns). Generalised linear models were used to explain the variation in catch as a function of effort (i.e., hours fished per day), vessel and gear characteristics, onboard technologies, population abundance and environmental factors. This analysis estimated that fishing power associated with Brown Tiger and Eastern King Prawns increased over the past 20 years by 10–30% and declined by approximately 10% for greasybacks. The density of tiger prawns was estimated to have almost tripled from around 0.5 kg per hectare in 1988 to 1.5 kg/ha in 2010. The density of Eastern King Prawns was estimated to have fluctuated between 1 and 2 kg per hectare over this time period, without any noticeable overall trend, while Greasyback Prawn densities were estimated to have fluctuated between 2 and 6 kg per hectare, also without any distinctive trend. A model of tiger prawn catches was developed to evaluate the impact of fishing on prawn survival rates in Moreton Bay. The model was fitted to logbook data using the maximum-likelihood method to provide estimates of the natural mortality rate (0.038 and 0.062 per week) and catchability (which can be defined as the proportion of the fished population that is removed by one unit of effort, in this case, estimated to be 2.5 ± 0.4 E-04 per boat-day). This approach provided a method for industry and scientists to develop together a realistic model of the dynamics of the fishery. Several aspects need to be developed further to make this model acceptable to industry. Firstly, there is considerable evidence to suggest that temperature influences prawn catchability. This ecological effect should be incorporated before developing meaningful harvest strategies. Secondly, total effort has to be allocated between each species. Such allocation of effort could be included in the model by estimating several catchability coefficients. Nevertheless, the work presented in this report is a stepping stone towards estimating essential fishery parameters and developing representative mathematical models required to evaluate harvest strategies. Developing a method that allowed an effective discussion between industry, management and scientists took longer than anticipated. As a result, harvest strategy evaluations were preliminary and only included the most valuable species in the fishery, Brown Tiger Prawns. Additional analyses and data collection, including information on catch composition from field sampling, migration rates and recruitment, would improve the modelling. Harvest strategy evaluations As the harvest strategy evaluations are preliminary, the following results should not be adopted for management purposes until more thorough evaluations are performed. The effects, of closing the fishery for one calendar month, on the annual catch and value of Brown Tiger Prawns were investigated. Each of the 12 months (i.e., January to December) was evaluated. The results were compared against historical records to determine the magnitude of gain or loss associated with the closure. Uncertainty regarding the trawl selectivity was addressed using two selectivity curves, one with a weight at 50% selection (S50%) of 7 g, based on research data, and a second with S50% of 14 g, put forward by industry. In both cases, it was concluded that any monthly closure after February would not be beneficial to the industry. The magnitude of the benefit of closing the fishery in either January or February was sensitive to which mesh selectivity curve that was assumed, with greater benefit achieved when the smaller selectivity curve (i.e., S50% = 7 g) was assumed. Using the smaller selectivity (S50% = 7 g), the expected increase in catch value was 10–20% which equates to $200,000 to $400,000 annually, while the larger selectivity curve (S50% = 14 g) suggested catch value would be improved by 5–10%, or $100,000 to $200,000. The harvest strategy evaluations showed that greater benefits, in the order of 30–60% increases in the tiger annual catch value, could have been obtained by closing the fishery early in the year when annual effort levels were high (i.e., > 10,000 boat-days). In recent years, as effort levels have declined (i.e., ~4000 boat-days annually), expected benefits from such closures are more modest. In essence, temporal closures offer greater benefit when fishing mortality rates are high. A spatial analysis of Brown Tiger Prawn catch and effort was also undertaken to obtain a better understanding of the prawn population dynamics. This indicated that, to improve profitability of the fishery, fishers could consider closing the fishery in the period from June to October, which is already a period of low profitability. This would protect the Brown Tiger Prawn spawning stock, increase catch rates of all species in the lucrative pre-Christmas period (November–December), and provide fishers with time to do vessel maintenance, arrange markets for the next season’s harvest, and, if they wish, work at other jobs. The analysis found that the instantaneous rate of total mortality (Z) for the March–June period did not vary significantly over the last two decades. As the Brown Tiger Prawn population in Moreton Bay has clearly increased over this time period, an interesting conclusion is that the instantaneous rate of natural mortality (M) must have increased, suggesting that tiger prawn natural mortality may be density-dependent at this time of year. Mortality rates of tiger prawns for June–October were found to have decreased over the last two decades, which has probably had a positive effect on spawning stocks in the October–November spawning period. Abiotic effects on the prawns The influence of air temperature, rainfall, freshwater flow, the southern oscillation index (SOI) and lunar phase on the catch rates of the four main prawn species were investigated. The analyses were based on over 200,000 daily logbook catch records over 23 years (i.e., 1988–2010). Freshwater flow was more influential than rainfall and SOI, and of the various sources of flow, the Brisbane River has the greatest volume and influence on Moreton Bay prawn catches. A number of time-lags were also considered. Flow in the preceding month prior to catch (i.e., 30 days prior, Logflow1_30) and two months prior (31–60 days prior, Logflow31_60) had strong positive effects on Banana Prawn catch rates. Average air temperature in the preceding 4-6 months (Temp121_180) also had a large positive effect on Banana Prawn catch rates. Flow in the month immediately preceding catch (Logflow1_30) had a strong positive influence on Greasyback Prawn catch rates. Air temperature in the preceding two months prior to catch (Temp1_60) had a large positive effect on Brown Tiger Prawn catch rates. No obvious or marked effects were detected for Eastern King Prawns, although interestingly, catch rates declined with increasing air temperature 4–6 months prior to catch. As most Eastern King Prawn catches in Moreton Bay occur in October to December, the results suggest catch rates decline with increasing winter temperatures. In most cases, the prawn catch rates declined with the waxing lunar phase (high luminance/full moon), and increased with the waning moon (low luminance/new moon). The SOI explains little additional variation in prawn catch rates (~ <2%), although its influence was higher for Banana Prawns. Extrapolating findings of the analyses to long-term climate change effects should be interpreted with caution. That said, the results are consistent with likely increases in abundance in the region for the two tropical species, Banana Prawns and Brown Tiger Prawns, as coastal temperatures rise. Conversely, declines in abundance could be expected for the two temperate species, Greasyback and Eastern King Prawns. Corporate management structures An examination of alternative governance systems was requested by the industry at one of the early meetings, particularly systems that may give them greater autonomy in decision making as well as help improve the marketing of their product. Consequently, a review of alternative management systems was undertaken, with a particular focus on the potential for self-management of small fisheries (small in terms of number of participants) and corporate management. The review looks at systems that have been implemented or proposed for other small fisheries internationally, with a particular focus on self-management as well as the potential benefits and challenges for corporate management. This review also highlighted particular opportunities for the Moreton Bay prawn fishery. Corporate management differs from other co-management and even self-management arrangements in that ‘ownership’ of the fishery is devolved to a company in which fishers and government are shareholders. The company manages the fishery as well as coordinates marketing to ensure that the best prices are received and that the catch taken meets the demands of the market. Coordinated harvesting will also result in increased profits, which are returned to fishers in the form of dividends. Corporate management offers many of the potential benefits of an individual quota system without formally implementing such a system. A corporate management model offers an advantage over a self-management model in that it can coordinate both marketing and management to take advantage of this unique geographical advantage. For such a system to be successful, the fishery needs to be relatively small and self- contained. Small in this sense is in terms of number of operators. The Moreton Bay prawn fishery satisfies these key conditions for a successful self-management and potentially corporate management system. The fishery is small both in terms of number of participants and geography. Unlike other fisheries that have progressed down the self-management route, the key market for the product from the Moreton Bay fishery is right at its doorstep. Corporate management also presents a number of challenges. First, it will require changes in the way fishers operate. In particular, the decision on when to fish and what to catch will be taken away from the individual and decided by the collective. Problems will develop if individuals do not join the corporation but continue to fish and market their own product separately. While this may seem an attractive option to fishers who believe they can do better independently, this is likely to be just a short- term advantage with an overall long-run cost to themselves as well as the rest of the industry. There are also a number of other areas that need further consideration, particularly in relation to the allocation of shares, including who should be allocated shares (e.g. just boat owners or also some employed skippers). Similarly, how harvesting activity is to be allocated by the corporation to the fishers. These are largely issues that cannot be answered without substantial consultation with those likely to be affected, and these groups cannot give these issues serious consideration until the point at which they are likely to become a reality. Given the current structure and complexity of the fishery, it is unlikely that such a management structure will be feasible in the short term. However, the fishery is a prime candidate for such a model, and development of such a management structure in the future should be considered as an option for the longer term.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Queensland fruit fly, Bactrocera tryoni, is the major pest fruit fly in Australia. Protein bait sprays, where insecticides are mixed with spot applications of a protein based food lure, are one of the sustainable pre-harvest fruit fly management strategies used in Australia. Although protein bait sprays do manage fruit fly infestation in the field, there is little science underpinning this technique and so improving its efficacy is difficult. Lacking information includes where and when to apply protein bait in order to best target foraging B. tryoni. As part of new work in this area, we investigated the effect of height of protein on tree and host plant fruiting status on the spatial and temporal protein foraging patterns of B. tryoni. MEthod: The work was conducted in the field using nectarine and guava plants and wild B. tryoni at Redland Bay, Queensland, Australia. Spot sprays of protein bait were applied to the foliage of randomly selected fruiting and non-fruiting trees. Each tree received protein bait spot sprays on the lower and higher foliage at 0530hrs. The number, sex and species of flies that fed on each protein spot were recorded hourly from 0600hrs through to 1800hrs.Results: For nectarines, there was a significant difference in the number of B. tryoni feeding on protein bait placed at different locations within the tree (ANOVA, F = 8.898, p = 0.001). More flies fed on protein placed on higher foliage relative to lower, irrespective of the fruiting status of the nectarine trees. A significant difference was also observed in the diurnal protein feeding pattern of B. tryoni (ANOVA, F = 2.164, p = 0.024), with more flies feeding at 1600hrs. Results for guava are still being collected and will be presented at the meeting.Conclusions: We conclude that B. tryoni effectively forages for protein at heights higher than 1.3m from ground, indicating greater efficacy of protein bait when applied at foliage higher in the canopy. Bactrocera tryoni actively forages for protein throughout the day, with a highest feeding peak at 1600hrs. The lack of significant difference in the spatial protein foraging pattern between fruiting and non-fruiting nectarine trees may be a real result, or may have resulted from the fruiting tree being very close (within 1 – 2 metres) of the non-fruiting tree. This hypothesis is being tested in the guava trial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fisheries managers are becoming increasingly aware of the need to quantify all forms of harvest, including that by recreational fishers. This need has been driven by both a growing recognition of the potential impact that noncommercial fishers can have on exploited resources and the requirement to allocate catch limits between different sectors of the wider fishing community in many jurisdictions. Marine recreational fishers are rarely required to report any of their activity, and some form of survey technique is usually required to estimate levels of recreational catch and effort. In this review, we describe and discuss studies that have attempted to estimate the nature and extent of recreational harvests of marine fishes in New Zealand and Australia over the past 20 years. We compare studies by method to show how circumstances dictate their application and to highlight recent developments that other researchers may find of use. Although there has been some convergence of approach, we suggest that context is an important consideration, and many of the techniques discussed here have been adapted to suit local conditions and to address recognized sources of bias. Much of this experience, along with novel improvements to existing approaches, have been reported only in "gray" literature because of an emphasis on providing estimates for immediate management purposes. This paper brings much of that work together for the first time, and we discuss how others might benefit from our experience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. The feral pig (Sus scrofa) is a widespread pest species in Australia and its populations are commonly controlled to reduce damage to agriculture and the environment. Feral pigs are also a resource and harvested for commercial export as game meat. Although many other control techniques are used, commercial harvesting of feral pigs is often encouraged by land managers, because it carries little or no cost and is widely perceived to control populations. Aims. To use feral-pig harvesting records, density data and simple harvest models to examine the effectiveness of commercial harvesting to reduce feral-pig populations. Methods. The present study examined commercial harvest off-take on six sites (246-657 km2) in southern Queensland, and 20 large blocks (~2-6000 km2) throughout Queensland. The harvest off-take for each site was divided by monthly or average annual population size, determined by aerial survey, to calculate monthly and annual harvest rates.Asimple harvest model assuming logistic population growth was used to determine the likely effectiveness of harvesting. Key results. Commercial harvest rates were generally low (<~20%) and are likely to provide only modest reductions in population size. Additionally, harvest rates capable of substantial reductions (>50%) in long-term population size were isolated occurrences and not maintained across sites and years. High harvest rates were observed only at low densities. Although these harvest rates may be sufficiently high to hold populations at low densities, the population is likely to escape this entrapment following a flush in food supply or a reduction in harvest effort. Implications. Our results demonstrated that, at current harvest rates, commercial harvesting is ineffective for the landscape-scale control of feral-pig populations. Unless harvest rates can be significantly increased, commercial harvesting should be used as a supplement to, rather than as a substitute for, other damage-control techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ptilotus nobilis (Lindl.) F. Muell. has potential in the floriculture industries as a cut flower crop. Ethylene production and respiration rates, fresh weight changes and volatile scent production from cut inflorescences of P. nobilis cultivars Passion (dark pink flowers) and Purity (white-green flowers) were measured during vase life. Inflorescence weight loss was significant (P<0.001) during vase life with wilting and colour loss being the primary reasons for loss of vase life. Inflorescences ready for the cut market stored and at 22 degrees C had vase lives of >12 d. Ethylene production by inflorescences was low to negligible. Treatment with silverthiosulphate (STS) and ethylene had no effects on vase life. Evidently, ethylene did not play a role in determining the postharvest longevity of cut P. nobilis flowers. Respiration rates of inflorescences were high at harvest (>700 mg CO2 kg(-1) FW h(-1)) and declined gradually there-after during vase life. Total volatile emissions followed a similar pattern. For Passion, respiration rates of immature florets were significantly greater (P=0.02) than florets from other developmental stages while the calyx produced the most CO2. For Purity, respiration rates of florets of different maturities did not differ and the reproductive tissue produced the most CO2. Only fully opened mature florets with their stigma and anthers revealed, emitted significant quantities of volatiles (P<0.001) and primarily from the calyx tissue for both cultivars. The individual volatiles differed somewhat for the two cultivars. However, both produced significant quantities of benzaldehyde, 3,5-dimethoxytoluene and benzyl alcohol. These. compounds have previously been associated with desirable floral scent. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial proliferation in both vase solutions and in cut flower stems has been implicated in reducing the vase life of numerous genera. Boronia heterophylla F. Muell. (Red Boronia) vase life was assessed at two stages of floral maturity for nine vase solution treatments covering a pH range of 2.5-5.7. Vase life for advanced harvest maturity stems ranged from 4.2 d in 10 mM citric acid + 50 mg L-1 chlorine (pH 2.5) to 12.9 d after STS pulsing (pH 5.7). For normal harvest maturity stems, the corresponding range was 5.8-19.0 d, respectively. Vase solutions containing 50 mg L-1 chlorine biocide resulted in decreased longevity. In contrast, pulsing with the ethylene-binding inhibitor, STS, significantly increased vase life. The number of bacteria in the vase solutions after 11 d was determined in stems of advanced maturity. The solution with the greatest number of bacteria, 4.0 x 10(10) cfu mL(-1), was water used after STS pulsing and in which the flowers lasted longest. Vase solution bacteria were enumerated on days 0,3, 6, 9 and 12 of the vase period with stems of normal harvest maturity. There was no relationship between vase life and vase solution bacterial numbers ((R) over bar (2) = 0.000). Moreover, there was a negative relationship between numbers of bacteria in basal 0-5 cm stem segments and vase life. As no correlations were evident between longevity and either the pH or vase solution bacterial numbers, B. heterophylla vase life was evidently limited principally by ethylene action. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cooked prawn colour is known to be a driver of market price and a visual indicator of product quality for the consumer. Although there is a general understanding that colour variation exists in farmed prawns, there has been no attempt to quantify this variation or identify where this variation is most prevalent. The objectives of this study were threefold: firstly to compare three different quantitative methods to measure prawn colour or pigmentation, two different colorimeters and colour quantification from digital images. Secondly, to quantify the amount of pigmentation variation that exists in farmed prawns within ponds, across ponds and across farms. Lastly, to assess the effects of ice storage or freeze-thawing of raw product prior to cooking. Each method was able to detect quantitative differences in prawn colour, although conversion of image based quantification of prawn colour from RGB to Lab was unreliable. Considerable colour variation was observed between prawns from different ponds and different farms, and this variation potentially affects product value. Different post-harvest methods prior to cooking were also shown to have a profound detrimental effect on prawn colour. Both long periods of ice storage and freeze thawing of raw product were detrimental to prawn colour. However, ice storage immediately after cooking was shown to be beneficial to prawn colour. Results demonstrated that darker prawn colour was preserved by holding harvested prawns alive in chilled seawater, limiting the time between harvesting and cooking, and avoiding long periods of ice storage or freeze thawing of uncooked product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cultural practices alter patterns of crop growth and can modify dynamics of weed-crop competition, and hence need to be investigated to evolve sustainable weed management in dry-seeded rice (DSR). Studies on weed dynamics in DSR sown at different times under two tillage systems were conducted at the Agronomic Research Farm, University of Agriculture, Faisalabad, Pakistan. A commonly grown fine rice cultivar 'Super Basmati' was sown on 15th June and 7th July of 2010 and 2011 under zero-till (ZT) and conventional tillage (CONT) and it was subjected to different durations of weed competition [10, 20, 30, 40, and 50 days after sowing (DAS) and season-long competition]. Weed-free plots were maintained under each tillage system and sowing time for comparison. Grassy weeds were higher under ZT while CONT had higher relative proportion of broad-leaved weeds in terms of density and biomass. Density of sedges was higher by 175% in the crop sown on the 7th July than on the 15th June. Delaying sowing time of DSR from mid June to the first week of July reduced weed density by 69 and 43% but their biomass remained unaffected. Tillage systems had no effect on total weed biomass. Plots subjected to season-long weed competition had mostly grasses while broad-leaved weeds were not observed at harvest. In the second year of study, dominance of grassy weeds was increased under both tillage systems and sowing times. Significantly less biomass (48%) of grassy weeds was observed under CONT than ZT in 2010; however, during 2011, this effect was non-significant. Trianthema portulacastrum and Dactyloctenium aegyptium were the dominant broad-leaved and grassy weeds, respectively. Cyperus rotundus was the dominant sedge weed, especially in the crop sown on the 7th July. Relative yield loss (RYL) ranged from 3 to 13% and 7 to16% when weeds were allowed to compete only for 20 DAS. Under season-long weed competition, RYL ranged from 68 to 77% in 2010 and 74 to80% in 2011. The sowing time of 15th June was effective in minimizing weed proliferation and rectifying yield penalty associated with the 7th July sowing. The results suggest that DSR in Pakistan should preferably be sown on 15th June under CONT systems and weeds must be controlled before 20 DAS to avoid yield losses. Successful adoption of DSR at growers' fields in Pakistan will depend on whether growers can control weeds and prevent shifts in weed population from intractable weeds to more difficult-to-control weeds as a consequence of DSR adoption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ptilotus nobilis (Lindl.) F. Muell. has potential in the floriculture industries as a cut flower crop. Ethylene production and respiration rates, fresh weight changes and volatile scent production from cut inflorescences of P. nobilis cultivars Passion (dark pink flowers) and Purity (white-green flowers) were measured during vase life. Inflorescence weight loss was significant (P < 0.001) during vase life with wilting and colour loss being the primary reasons for loss of vase life. Inflorescences ready for the cut market stored and at 22 °C had vase lives of >12 d. Ethylene production by inflorescences was low to negligible. Treatment with silverthiosulphate (STS) and ethylene had no effects on vase life. Evidently, ethylene did not play a role in determining the postharvest longevity of cut P. nobilis flowers. Respiration rates of inflorescences were high at harvest (>700 mg CO2 kg−1 FW h−1) and declined gradually thereafter during vase life. Total volatile emissions followed a similar pattern. For Passion, respiration rates of immature florets were significantly greater (P = 0.02) than florets from other developmental stages while the calyx produced the most CO2. For Purity, respiration rates of florets of different maturities did not differ and the reproductive tissue produced the most CO2. Only fully opened mature florets with their stigma and anthers revealed, emitted significant quantities of volatiles (P < 0.001) and primarily from the calyx tissue for both cultivars. The individual volatiles differed somewhat for the two cultivars. However, both produced significant quantities of benzaldehyde, 3,5-dimethoxytoluene and benzyl alcohol. These compounds have previously been associated with desirable floral scent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ptilotus nobilis (Lindl.) F. Muell. has potential in the floriculture industries as a cut flower crop. Ethylene production and respiration rates, fresh weight changes and volatile scent production from cut inflorescences of P. nobilis cultivars Passion (dark pink flowers) and Purity (white-green flowers) were measured during vase life. Inflorescence weight loss was significant (P < 0.001) during vase life with wilting and colour loss being the primary reasons for loss of vase life. Inflorescences ready for the cut market stored and at 22 °C had vase lives of >12 d. Ethylene production by inflorescences was low to negligible. Treatment with silverthiosulphate (STS) and ethylene had no effects on vase life. Evidently, ethylene did not play a role in determining the postharvest longevity of cut P. nobilis flowers. Respiration rates of inflorescences were high at harvest (>700 mg CO2 kg−1 FW h−1) and declined gradually thereafter during vase life. Total volatile emissions followed a similar pattern. For Passion, respiration rates of immature florets were significantly greater (P = 0.02) than florets from other developmental stages while the calyx produced the most CO2. For Purity, respiration rates of florets of different maturities did not differ and the reproductive tissue produced the most CO2. Only fully opened mature florets with their stigma and anthers revealed, emitted significant quantities of volatiles (P < 0.001) and primarily from the calyx tissue for both cultivars. The individual volatiles differed somewhat for the two cultivars. However, both produced significant quantities of benzaldehyde, 3,5-dimethoxytoluene and benzyl alcohol. These compounds have previously been associated with desirable floral scent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.