68 resultados para Erigena, Johannes Scotus, approximately 810-approximately 877.
Resumo:
Approximately 30% of plant nuclear genes appear to encode proteins targeted to the plastids or endoplasmic reticulum (ER). The signals that direct proteins into these compartments are diverse in sequence, but, on the basis of a limited number of tests in heterologous systems, they appear to be functionally conserved across species. To further test the generality of this conclusion, we tested the ability of two plastid transit peptides and an ER signal peptide to target green fluorescent protein (GFP) in 12 crops, including three monocots (barley, sugarcane, wheat) and nine dicots (Arabidopsis, broccoli, cabbage, carrot, cauliflower, lettuce, radish, tobacco, turnip). In all species, transient assays following microprojectile bombardment or vacuum infiltration using Agrobacterium showed that the plastid transit peptides from tomato DCL (defective chloroplast and leaves) and tobacco RbcS [ribulose bisphosphate carboxylase (Rubisco) small subunit] genes were effective in targeting GFP to the leaf plastids. GFP engineered as a fusion to the N-terminal ER signal peptide from Arabidopsis basic chitinase and a C-terminal HDEL signal for protein retention in the ER was accumulated in the ER of all species. The results in tobacco were confirmed in stably transformed cells. These signal sequences should be useful to direct proteins to the plastid stroma or ER lumen in diverse plant species of biotechnological interest for the accumulation of particular recombinant proteins or for the modification of particular metabolic streams.
Resumo:
BACKGROUND: In spite of the extensive use of phosphine fumigation around the world to control insects in stored grain, and the knowledge that grain sorbs phosphine, the effect of concentration on sorption has not been quantified. A laboratory study was undertaken, therefore, to investigate the effect of phosphine dose on sorption in wheat. Wheat was added to glass flasks to achieve filling ratios of 0.25-0.95, and the flasks were sealed and injected with phosphine at 0.1-1.5 mg L-1 based on flask volume. Phosphine concentration was monitored for 8 days at 25°C and 55% RH. RESULTS: When sorption occurred, phosphine concentration declined with time and was approximately first order, i.e. the data fitted an exponential decay equation. Percentage sorption per day was directly proportional to filling ratio, and was negatively correlated with dose for any given filling ratio. Based on the results, a tenfold increase in dose would result in a halving of the sorption constant and the percentage daily loss. Wheat was less sorptive if it was fumigated for a second time. CONCLUSIONS: The results have implications for the use of phosphine for control of insects in stored wheat. This study shows that dose is a factor that must be considered when trying to understand the impact of sorption on phosphine concentration, and that there appears to be a limit to the capacity of wheat to sorb phosphine.
Resumo:
Because weed eradication programs commonly take 10 or more years to complete, there is a need to evaluate progress toward the eradication objective. We present a simple model, based on information that is readily obtainable, that assesses conformity to the delimitation and extirpation criteria for eradication. It is applied to the program currently targeting the annual parasitic weed, branched broomrape, in South Australia. The model consists of delimitation and extirpation (E) measures plotted against each other to form an 'eradograph.' Deviations from the 'ideal' eradograph plot can inform tactical responses, e.g., increases in survey and/or control effort. Infestations progress from the active phase to the monitoring phase when no plants have been detected for at least 12 mo. They revert to the active phase upon further detection of plants. We summarize this process for the invasion as a whole in a state-and-transition model. Using this model we demonstrate that the invasion is unlikely to be delimited unless the amount of newly detected infested area decreases, on average, by at least 50% per annum. As a result of control activities implemented, on average approximately 70% (range, 44 to 86%) of active infestations progressed to the monitoring phase in the year following their detection. Simulations suggest that increasing this rate of transition will not increase E to a significant extent. The rate of reversion of infestations from the monitoring phase to the active phase decreased logarithmically with time since last detection, but it is likely that lower rates of reversion would accelerate the trend toward extirpation. Program performance with respect to the delimitation criterion has been variable; performance with respect to the extirpation criterion would be improved considerably by the development and application of cost-effective methods for eliminating branched broomrape soil seed populations.
Resumo:
Limb-loss in crustaceans can reduce moult increment and delay or advance the timing of moulting, both aspects that are likely to impact upon soft-shell crab production. Pond-reared blue swimmer crabs Portunus pelagicus were harvested and maintained in a crab shedding system. The wet weight, carapace width (CW) and the occurrence of limb-loss were assessed before stocking in the shedding system and after each of the next three moults. Many of the crabs were initially missing one or two limbs and these did not grow as much as the crabs that were intact at the start of the trial. Despite its strong correlation with wet weight, CW changes proved to be misleading. Limb-loss reduced the %CW increment but not the per cent weight increment (where the later is calculated from the actual pre-moult weight). Pre-moult weight explained much of the variation in post-moult weight, with crabs moulting to approximately double their weight. Limb-loss reduced 'growth' and production from the pond because it reduced pre-moult weight but limb-loss did not alter the weight change on shedding a given weight of crabs, although some of that change now included regeneration of limbs. One can hypothesize that much of the size variation seen in pond-reared crabs may be due to accumulated effects of repeated limb-loss, rather than genetic variation.
Resumo:
Weighing lysimeters are the standard method for directly measuring evapotranspiration (ET). This paper discusses the construction, installation, and performance of two (1.52 m × 1.52 m × 2.13-m deep) repacked weighing lysimeters for measuring ET of corn and soybean in West Central Nebraska. The cost of constructing and installing each lysimeter was approximately US $12,500, which could vary depending on the availability and cost of equipment and labor. The resolution of the lysimeters was 0.0001 mV V-1, which was limited by the data processing and storage resolution of the datalogger. This resolution was equivalent to 0.064 and 0.078 mm of ET for the north and south lysimeters, respectively. Since the percent measurement error decreases with the magnitude of the ET measured, this resolution is adequate for measuring ET for daily and longer periods, but not for shorter time steps. This resolution would result in measurement errors of less than 5% for measuring ET values of ≥3 mm, but the percent error rapidly increases for lower ET values. The resolution of the lysimeters could potentially be improved by choosing a datalogger that could process and store data with a higher resolution than the one used in this study.
Resumo:
Synthetic backcrossed-derived bread wheats (SBWs) from CIMMYT were grown in the Northwest of Mexico at Centro de Investigaciones Agrícolas del Noroeste (CIANO) and sites across Australia during three seasons. During three consecutive years Australia received “shipments” of different SBWs from CIMMYT for evaluation. A different set of lines was evaluated each season, as new materials became available from the CIMMYT crop enhancement program. These consisted of approximately 100 advanced lines (F7) per year. SBWs had been top and backcrossed to CIMMYT cultivars in the first two shipments and to Australian wheat cultivars in the third one. At CIANO, the SBWs were trialled under receding soil moisture conditions. We evaluated both the performance of each line across all environments and the genotype-by-environment interaction using an analysis that fits a multiplicative mixed model, adjusted for spatial field trends. Data were organised in three groups of multienvironment trials (MET) containing germplasm from shipment 1 (METShip1), 2 (METShip2), and 3 (METShip3), respectively. Large components of variance for the genotype × environment interaction were found for each MET analysis, due to the diversity of environments included and the limited replication over years (only in METShip2, lines were tested over 2 years). The average percentage of genetic variance explained by the factor analytic models with two factors was 50.3% for METShip1, 46.7% for METShip2, and 48.7% for METShip3. Yield comparison focused only on lines that were present in all locations within a METShip, or “core” SBWs. A number of core SBWs, crossed to both Australian and CIMMYT backgrounds, outperformed the local benchmark checks at sites from the northern end of the Australian wheat belt, with reduced success at more southern locations. In general, lines that succeeded in the north were different from those in the south. The moderate positive genetic correlation between CIANO and locations in the northern wheat growing region likely reflects similarities in average temperature during flowering, high evaporative demand, and a short flowering interval. We are currently studying attributes of this germplasm that may contribute to adaptation, with the aim of improving the selection process in both Mexico and Australia.
Resumo:
The distribution and nutritional profiles of sub-tidal seagrasses from the Torres Strait were surveyed and mapped across an area of 31,000 km2. Benthic sediment composition, water depth, seagrass species type and nutrients were sampled at 168 points selected in a stratified representative pattern. Eleven species of seagrass were present at 56 (33.3%) of the sample points. Halophila spinulosa, Halophila ovalis, Cymodocea serrulata and Syringodium isoetifolium were the most common species and these were nutrient profiled. Sub-tidal seagrass distribution (and associated seagrass nutrient concentrations) was generally confined to northern-central and south-western regions of the survey area (
Resumo:
Mellitochory, seed dispersal by bees, has been implicated in long-distance dispersal of the tropical rain forest tree, Corymbia torelliana (Myrtaceae). We examined natural and introduced populations of C. torelliana for 4 years to determine the species of bees that disperse seeds, and the extent and distance of seed dispersal. The mechanism of seed dispersal by bees was also investigated, including fruit traits that promote dispersal, foraging behaviour of bees at fruits, and the fate of seeds. The fruit structure of C. torelliana, with seed presented in a resin reward, is a unique trait that promotes seed dispersal by bees and often results in long-distance dispersal. We discovered that a guild of four species of stingless bees, Trigona carbonaria, T. clypearis, T. sapiens, and T. hockingsi, dispersed seeds of C. torelliana in its natural range. More than half of the nests found within 250 m of fruiting trees had evidence of seed transport. Seeds were transported minimum distances of 20-220 m by bees. Approximately 88% of seeds were dispersed by gravity but almost all fruits retained one or two seeds embedded in resin for bee dispersal. Bee foraging for resin peaked immediately after fruit opening and corresponded to a peak of seed dispersal at the hive. There were strong correlations between numbers of seeds brought in and taken out of each hive by bees (r = 0.753-0.992, P < 0.05), and germination rates were 95 ± 5%. These results showed that bee-transported seeds were effectively dispersed outside of the hive soon after release from fruits. Seed dispersal by bees is a non-standard dispersal mechanism for C. torelliana, as most seeds are dispersed by gravity before bees can enter fruits. However, many C. torelliana seeds are dispersed by bees, since seeds are retained in almost all fruits, and all of these are dispersed by bees.
Resumo:
The sequential nature of gel-based marker systems entails low throughput and high costs per assay. Commonly used marker systems such as SSR and SNP are also dependent on sequence information. These limitations result in high cost per data point and significantly limit the capacity of breeding programs to obtain sufficient return on investment to justify the routine use of marker-assisted breeding for many traits and particularly quantitative traits. Diversity Arrays Technology (DArT™) is a cost effective hybridisation-based marker technology that offers a high multiplexing level while being independent of sequence information. This technology offers sorghum breeding programs an alternative approach to whole-genome profiling. We report on the development, application, mapping and utility of DArT™ markers for sorghum germplasm. Results: A genotyping array was developed representing approximately 12,000 genomic clones using PstI+BanII complexity with a subset of clones obtained through the suppression subtractive hybridisation (SSH) method. The genotyping array was used to analyse a diverse set of sorghum genotypes and screening a Recombinant Inbred Lines (RIL) mapping population. Over 500 markers detected variation among 90 accessions used in a diversity analysis. Cluster analysis discriminated well between all 90 genotypes. To confirm that the sorghum DArT markers behave in a Mendelian manner, we constructed a genetic linkage map for a cross between R931945-2-2 and IS 8525 integrating DArT and other marker types. In total, 596 markers could be placed on the integrated linkage map, which spanned 1431.6 cM. The genetic linkage map had an average marker density of 1/2.39 cM, with an average DArT marker density of 1/3.9 cM. Conclusion: We have successfully developed DArT markers for Sorghum bicolor and have demonstrated that DArT provides high quality markers that can be used for diversity analyses and to construct medium-density genetic linkage maps. The high number of DArT markers generated in a single assay not only provides a precise estimate of genetic relationships among genotypes, but also their even distribution over the genome offers real advantages for a range of molecular breeding and genomics applications.
Resumo:
Paropsis atomaria is a recently emerged pest of eucalypt plantations in subtropical Australia. Its broad host range of at least 20 eucalypt species and wide geographical distribution provides it the potential to become a serious forestry pest both within Australia and, if accidentally introduced, overseas. Although populations of P. atomaria are genetically similar throughout its range, population dynamics differ between regions. Here, we determine temperature-dependent developmental requirements using beetles sourced from temperate and subtropical zones by calculating lower temperature thresholds, temperature-induced mortality, and day-degree requirements. We combine these data with field mortality estimates of immature life stages to produce a cohort-based model, ParopSys, using DYMEX™ that accurately predicts the timing, duration, and relative abundance of life stages in the field and number of generations in a spring–autumn (September–May) field season. Voltinism was identified as a seasonally plastic trait dependent upon environmental conditions, with two generations observed and predicted in the Australian Capital Territory, and up to four in Queensland. Lower temperature thresholds for development ranged between 4 and 9 °C, and overall development rates did not differ according to beetle origin. Total immature development time (egg–adult) was approximately 769.2 ± S.E. 127.8 DD above a lower temperature threshold of 6.4 ± S.E. 2.6 °C. ParopSys provides a basic tool enabling forest managers to use the number of generations and seasonal fluctuations in abundance of damaging life stages to estimate the pest risk of P. atomaria prior to plantation establishment, and predict the occurrence and duration of damaging life stages in the field. Additionally, by using local climatic data the pest potential of P. atomaria can be estimated to predict the risk of it establishing if accidentally introduced overseas. Improvements to ParopSys’ capability and complexity can be made as more biological data become available.
Resumo:
From a study of 3 large half-sib families of cattle, we describe linkage between DNA polymorphisms on bovine chromosome 7 and meat tenderness. Quantitative trait loci (QTL) for Longissimus lumborum peak force (LLPF) and Semitendonosis adhesion (STADH) were located to this map of DNA markers, which includes the calpastatin ( CAST) and lysyl oxidase (LOX) genes. The LLPF QTL has a maximum lodscore of 4.9 and allele substitution of approximately 0.80 of a phenotypic standard deviation, and the peak is located over the CAST gene. The STADH QTL has a maximum lodscore of 3.5 and an allele substitution of approximately 0.37 of a phenotypic standard deviation, and the peak is located over the LOX gene. This suggests 2 separate likelihood peaks on the chromosome. Further analyses of meat tenderness measures in the Longissimus lumborum, LLPF and LL compression (LLC), in which outlier individuals or kill groups are removed, demonstrate large shifts in the location of LLPF QTL, as well as confirming that there are indeed 2 QTL on bovine chromosome 7. We found that both QTL are reflected in both LLPF and LLC measurements, suggesting that both these components of tenderness, myofibrillar and connective tissue, are detected by both measurements in this muscle.
Resumo:
Near infrared spectroscopy (NIRS) can be used for the on-line, non-invasive assessment of fruit for eating quality attributes such as total soluble solids (TSS). The robustness of multivariate calibration models, based on NIRS in a partial transmittance optical geometry, for the assessment of TSS of intact rockmelons (Cucumis melo) was assessed. The mesocarp TSS was highest around the fruit equator and increased towards the seed cavity. Inner mesocarp TSS levels decreased towards both the proximal and distal ends of the fruit, but more so towards the proximal end. The equatorial region of the fruit was chosen as representative of the fruit for near infrared assessment of TSS. The spectral window for model development was optimised at 695-1045 nm, and the data pre-treatment procedure was optimised to second-derivative absorbance without scatter correction. The 'global' modified partial least squares (MPLS) regression modelling procedure of WINISI (ver. 1.04) was found to be superior with respect to root mean squared error of prediction (RMSEP) and bias for model predictions of TSS across seasons, compared with the 'local' MPLS regression procedure. Updating of the model with samples selected randomly from the independent validation population demonstrated improvement in both RMSEP and bias with addition of approximately 15 samples.
Resumo:
Mucopolysaccharidosis IIIB, an autosomal recessive lysosomal storage disorder of heparan sulfate caused by mutations in the α-N-acetylglucosaminidase (NAGLU) gene, was recently discovered in cattle. Clinical signs include progressive ataxia, stumbling gait, swaying and difficulty in balance and walking. These clinical signs are usually first observed at approximately 2 years of age and then develop progressively over the lifespan of the animals. Affected bulls were found to be homozygous for the missense mutation E452K (c.1354G>A). The availability of mutational analysis permits screening for the NAGLU mutation to eradicate this mutation from the cattle breeding population.
Resumo:
Aims: To identify dominant bacteria in grain (barley)-fed cattle for isolation and future use to increase the efficiency of starch utilization in these cattle. Methods and Results: Total DNA was extracted from samples of the rumen contents from eight steers fed a barley diet for 9 and 14 days. Bacterial profiles were obtained using denaturing gradient gel electrophoresis (DGGE) of the PCR-amplified V2/V3 region of the 16S rRNA genes from total bacterial DNA. Apparently dominant bands were excised and cloned, and the clone insert sequence was determined. One of the most common and dominant bacteria present was identified as Ruminococcus bromii. This species was subsequently isolated using traditional culture-based techniques and its dominance in the grain-fed cattle was confirmed using a real-time Taq nuclease assay (TNA) designed for this purpose. In some animals, the population of R. bromii reached densities above 1010R. bromii cell equivalents per ml or approximately 10% of the total bacterial population. Conclusions: Ruminococcus bromii is a dominant bacterial population in the rumen of cattle fed a barley-based diet. Significance and Impact of the Study: Ruminococcus bromii YE282 may be useful as a probiotic inoculant to increase the efficiency of starch utilization in barley-fed cattle. The combination of DGGE and real-time TNA has been an effective process for identifying and targeting for isolation, dominant bacteria in a complex ecosystem.
Resumo:
Laboratory-based relationships that model the phytotoxicity of metals using soil properties have been developed. This paper presents the first field-based phytotoxicity relationships. Wheat(Triticum aestivum L) was grown at 11 Australian field sites at which soil was spiked with copper (Cu) and zinc (Zn) salts. Toxicity was measured as inhibition of plant growth at 8 weeks and grain yield at harvest. The added Cu and Zn EC10 values for both endpoints ranged from approximately 3 to 4760 mg/kg. There were no relationships between field-based 8-week biomass and grain yield toxicity values for either metal. Cu toxicity was best modelled using pH and organic carbon content while Zn toxicity was best modelled using pH and the cation exchange capacity. The best relationships estimated toxicity within a factor of two of measured values. Laboratory-based phytotoxicity relationships could not accurately predict field-based phytotoxicity responses.