20 resultados para Discrete Gaussian Sampling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spinosad, diatomaceous earth, and cyfluthrin were assessed on two broiler farms at Gleneagle and Gatton in southeastern Queensland, Australia in 2004-2005 and 2007-2009, respectively to determine their effectiveness in controlling lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Insecticide treatments were applied mostly to earth or 'hard' cement floors of broiler houses before the placement of new bedding. Efficacy of each agent was assessed by regular sampling of litter and counting of immature stages and adult beetles, and comparing insect counts in treatments to counts in untreated houses. Generally, the lowest numbers of lesser mealworm were recorded in the house with hard floors, these numbers equalling the most effective spinosad applications. The most effective treatment was a strategic application of spinosad under feed supply lines on a hard floor. In compacted earth floor houses, mean numbers of lesser mealworms for two under-feed-line spinosad treatments (i.e., 2-m-wide application at 0.18 g of active insecticide (g [AI]) in 100-ml water/m(2), and 1-m-wide application at 0.11 g ([AI] in 33-ml water/m(2)), and an entire floor spinosad treatment (0.07 g [AI] in 86-ml water/m2) were significantly lower (i.e., better control) than those numbers for cyfluthrin, and no treatment (controls). The 1-m-wide under-feed-line treatment was the most cost-effective dose, providing similar control to the other two most effective spinosad treatments, but using less than half the active component per broiler house. No efficacy was demonstrated when spinosad was applied to the surface of bedding in relatively large volumes of water. All applications of diatomaceous earth, applied with and without spinosad, and cyfluthrin at the label rate of 0.02 g (AI)/100-ml water/m(2) showed no effect, with insect counts not significantly different to untreated controls. Overall, the results of this field assessment indicate that cyfluthrin (the Australian industry standard) and diatomaceous earth were ineffective on these two farms and that spinosad can be a viable alternative for broiler house use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathogens and pests of stored grains move through complex dynamic networks linking fields, farms, and bulk storage facilities. Human transport and other forms of dispersal link the components of this network. A network model for pathogen and pest movement through stored grain systems is a first step toward new sampling and mitigation strategies that utilize information about the network structure. An understanding of network structure can be applied to identifying the key network components for pathogen or pest movement through the system. For example, it may be useful to identify a network node, such as a local grain storage facility, through which grain from a large number of fields will be accumulated and move through the network. This node may be particularly important for sampling and mitigation. In some cases more detailed information about network structure can identify key nodes that link two large sections of the network, such that management at the key nodes will greatly reduce the risk of spread between the two sections. In addition to the spread of particular species of pathogens and pests, we also evaluate the spread of problematic subpopulations, such as subpopulations with pesticide resistance. We present an analysis of stored grain pathogen and pest networks for Australia and the United States.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invasive and noxious weeds are well known as a pervasive problem, imposing significant economic burdens on all areas of agriculture. Whilst there are multiple possible pathways of weed dispersal in this industry, of particular interest to this discussion is the unintended dispersal of weed seeds within fodder. During periods of drought or following natural disasters such as wild fire or flood, there arises the urgent need for 'relief' fodder to ensure survival and recovery of livestock. In emergency situations, relief fodder may be sourced from widely dispersed geographic regions, and some of these regions may be invaded by an extensive variety of weeds that are both exotic and detrimental to the intended destination for the fodder. Pasture hay is a common source of relief fodder and it typically consists of a mixture of grassy and broadleaf species that may include noxious weeds. When required urgently, pasture hay for relief fodder can be cut, baled, and transported over long distances in a short period of time, with little opportunity for prebaling inspection. It appears that, at the present time, there has been little effort towards rapid testing of bales, post-baling, for the presence of noxious weeds, as a measure to prevent dispersal of seeds. Published studies have relied on the analysis of relatively small numbers of bales, tested to destruction, in order to reveal seed species for identification and enumeration. The development of faster, more reliable, and non-destructive sampling methods is essential to increase the fodder industry's capacity to prevent the dispersal of noxious weeds to previously unaffected locales.