42 resultados para Diapiric structure
Resumo:
The stable isotopes of delta O-18 and delta C-13 in sagittal otolith carbonates were used to determine the stock structure of Grey Mackerel, Scomberomorus semifasciatus. Otoliths were collected from Grey Mackerel at ten locations representing much of their distributional and fisheries range across northern Australia from 2005 to 2007. Across this broad range (similar to 6500 km), fish from four broad locations-Western Australia (S1), Northern Territory and Gulf of Carpentaria (S2, S3, S4, S5, S6, S7), Queensland east coast mid and north sites (S8, S9) and Queensland east coast south site (S10)-had stable isotope values that were significantly different indicating stock separation. Otolith stable isotopes differed more between locations than among years within a location, indicating temporal stability across years. The spatial separation of these populations indicates a complex stock structure across northern Australia. Stocks of S. semifasciatus appear to be associated with large coastal embayments. These results indicate that optimal fisheries management may require a review of the current spatial arrangements, particularly in relation to the evidence of shared stocks in the Gulf of Carpentaria. Furthermore, as the population of S. semifasciatus in Western Australia exhibited high spatial separation from those at all the other locations examined, further research activities should focus on investigating additional locations within Western Australia for an enhanced determination of stock delineation. From the issue entitled "Proceedings of the 4th International Otolith Symposium, 24-28 August 2009, Monterey, California"
Resumo:
Microsatellite markers were used to examine spatio-temporal genetic variation in the endangered eastern freshwater cod Maccullochella ikei in the Clarence River system, eastern Australia. High levels of population structure were detected. A model-based clustering analysis of multilocus genotypes identified four populations that were highly differentiated by F-statistics (FST = 0· 09 − 0· 49; P < 0· 05), suggesting fragmentation and restricted dispersal particularly among upstream sites. Hatchery breeding programmes were used to re-establish locally extirpated populations and to supplement remnant populations. Bayesian and frequency-based analyses of hatchery fingerling samples provided evidence for population admixture in the hatchery, with the majority of parental stock sourced from distinct upstream sites. Comparison between historical and contemporary wild-caught samples showed a significant loss of heterozygosity (21%) and allelic richness (24%) in the Mann and Nymboida Rivers since the commencement of stocking. Fragmentation may have been a causative factor; however, temporal shifts in allele frequencies suggest swamping with hatchery-produced M. ikei has contributed to the genetic decline in the largest wild population. This study demonstrates the importance of using information on genetic variation and population structure in the management of breeding and stocking programmes, particularly for threatened species.
Resumo:
Biodiversity of sharks in the tropical Indo-Pacific is high, but species-specific information to assist sustainable resource exploitation is scarce. The null hypothesis of population genetic homogeneity was tested for scalloped hammerhead shark (Sphyrna lewini, n = 237) and the milk shark (Rhizoprionodon acutus, n = 207) from northern and eastern Australia, using nuclear (S. lewini, eight microsatellite loci; R. acutus, six loci) and mitochondrial gene markers (873 base pairs of NADH dehydrogenase subunit 4). We were unable to reject genetic homogeneity for S. lewini, which was as expected based on previous studies of this species. Less expected were similar results for R. acutus, which is more benthic and less vagile than S. lewini. These features are probably driving the genetic break found between Australian and central Indonesian R. acutus (F-statistics; mtDNA, 0.751–0.903, respectively; microsatellite loci, 0.038–0.047 respectively). Our results support the spatially homogeneous monitoring and management plan for shark species in Queensland, Australia.
Resumo:
The white-spotted eagle ray Aetobatus narinari is a species complex that occurs circumglobally throughout warm-temperate waters. Aetobatus narinari is semi-pelagic and large (up to 300 cm disc width), suggesting high dispersal capabilities and gene flow on a wide spatial scale. Sequence data from two mitochondrial genes, cytochrome b (cytb) and NADH dehydrogenase subunit 4 (ND4), were used to determine the genetic variability within and among 18 sampling locations in the central Indo-Pacific biogeographical region. Populations in the Indo-Pacific were highly genetically structured with c. 70% of the total genetic variation found among three geographical regions (East China Sea, Southeast Asia and Australia). FST was 0.64 for cytb and 0.53 for ND4, with φST values being even larger, that is, 0.78 for cytb and 0.65 for ND4. This high-level genetic partitioning provides strong evidence against extensive gene flow in A. narinari. The degree of genetic population structuring in the Indo-Pacific was similar to that found on a global scale. Global FST was 0.63 for cytb and 0.57 for ND4, and global φST values were 0.94 for cytb and 0.82 for ND4. This suggests that the A. narinari complex may be more speciose than the two or three species proposed to date. Further sampling and genetic analyses are likely to uncover the ‘evolutionarily significant’ and ‘management’ units that are critical to determine the susceptibilities of individual populations to regional fishing pressures and to provide advice on management options. Network analyses showed a close genetic relationship between haplotypes from the central Indo-Pacific and South Africa, providing support for a proposed dispersal pathway from the possible centre of origin of the A. narinari species complex in the Indo-Pacific into the Atlantic Ocean.
Resumo:
The Indo-West Pacific (IWP), from South Africa in the western Indian Ocean to the western Pacific Ocean, contains some of the most biologically diverse marine habitats on earth, including the greatest biodiversity of chondrichthyan fishes. The region encompasses various densities of human habitation leading to contrasts in the levels of exploitation experienced by chondrichthyans, which are targeted for local consumption and export. The demersal chondrichthyan, the zebra shark, Stegostoma fasciatum, is endemic to the IWP and has two current regional International Union for the Conservation of Nature (IUCN) Red List classifications that reflect differing levels of exploitation: ‘Least Concern’ and ‘Vulnerable’. In this study, we employed mitochondrial ND4 sequence data and 13 microsatellite loci to investigate the population genetic structure of 180 zebra sharks from 13 locations throughout the IWP to test the concordance of IUCN zones with demographic units that have conservation value. Mitochondrial and microsatellite data sets from samples collected throughout northern Australia and Southeast Asia concord with the regional IUCN classifications. However, we found evidence of genetic subdivision within these regions, including subdivision between locations connected by habitat suitable for migration. Furthermore, parametric FST analyses and Bayesian clustering analyses indicated that the primary genetic break within the IWP is not represented by the IUCN classifications but rather is congruent with the Indonesian throughflow current. Our findings indicate that recruitment to areas of high exploitation from nearby healthy populations in zebra sharks is likely to be minimal, and that severe localized depletions are predicted to occur in zebra shark populations throughout the IWP region.
Resumo:
Northern Australia is considered to be one of the last strongholds for three critically endangered sawfishes, Pristis zijsron, Pristis clavata, and Pristis microdon, making these populations of global significance. Population structure and levels of genetic diversity were assessed for each species across northern Australia using a portion of the mitochondrial control region. Statistically significant genetic structure was detected in all three species, although it was higher in P. microdon (F-ST = 0.811; N = 149) than in either P. clavata (F-ST = 0.419; N = 73) or P. zijsron (F-ST = 0.202; N = 49), possibly due to a much higher and/or localized level of female philopatry in P. microdon. The overall levels of haplotype diversity in P. zijsron (h = 0.555), P. clavata (h = 0.489), and P. microdon (h = 0.650) were moderate, although it appears to be reduced in the assemblages of P. zijsron and P. clavata in the Gulf of Carpentaria (h = 0.342 and h = 0.083, respectively). Since female migration (replenishment) between regions is unlikely, conservation plans should strive to maintain current levels of diversity and abundances in the regional assemblages of each species.
Resumo:
The project has provided management and other stakeholders with information necessary to make informed decisions about the management of four of the key exploited shark species caught in the Queensland inshore net fishery and northern New South Wales line fishery. The project has determined that spatial management of milk sharks within Queensland, and scalloped hammerhead, common black tip and Australian black tip sharks within Queensland and New South Wales is appropriate. The project has determined that both black tip shark species are likely to require co-operative management arrangements between Queensland and New South Wales. For scalloped hammerheads separate stocks between the two jurisdictions were identified from the fisheriesdependent samples, however genetic exchange across borders is likely to be facilitated by movement of adult females and perhaps larger males to a lesser extent. This information will greatly assist compliance with the Commonwealth Environment Protection and Biodiversity Conservation Act (1999) for shark fisheries in north-eastern Australia by providing the necessary basis for robust assessment of the status of stocks of the study species, thereby helping to deliver their sustainable harvest. It also helps to achieve objectives of the Australian National Shark Plan. The project provides the appropriate spatial framework for future monitoring and assessment of the study species. This is at a time when shark fisheries are receiving close attention from all sectors and when monitoring programs are being implemented, aimed at better assessment of stock status. This project has provided the crucial information for developing an appropriate monitoring design as well as the necessary basis for making statements about stock status. The project has addressed research priorities identified by the Queensland Fisheries Research Advisory Board, Great Barrier Reef Marine Park Authority and Queensland Fisheries. Previously management has assumed a single stock for each species on the east coast of Queensland, and management of shark fisheries in New South Wales (NSW) and Queensland has been independent of one another. The project has been able to enhance and develop links between research, management and industry. Strong positive relationships with commercial fishers were crucial in the collection of samples throughout the study area and fisheries managers were part of the project team throughout the study period. During the project the study area was extended to include both Queensland and NSW waters, creating mutualistic and positive links between the States’ research and management agencies. Extension of project results included management representatives from NSW and Queensland, as well as the Northern Territory where similar shark fisheries operate and similar species are targeted. The project was able to provide significant human capital development opportunities providing considerable value to the project outcomes. Use of vertebral microchemistry and life history characteristics as stock determination methods provided material for two PhD students based at James Cook University: Ron Schroeder, vertebral chemistry; and Alastair Harry, life history characteristic. The project has developed novel research methods that have great capacity for future application, including: • Development of a simple and rapid genetic diagnostic tool (RT-HRM-PCR assay) for differentiating among the black tip shark species, for which no simple morphological identifier exists; and • Development of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) methods for analysing and interpreting microchemical composition of shark vertebrae. The study has provided further confirmation of the effectiveness of using a holistic approach in stock structure studies and justifies investment into such studies.
Resumo:
Develop microsatellite markers to distinguish strains of Eimeria acervulina, E. brunetti and E. maxima. Conduct nationwide sampling of chicken faeces to build baseline of Eimeria population genetic diversity for 5 economically important speces (3 species above plus E. tenella and E. necatrix). Conduct focused local screening to assess temporal changes in populations historically sampled.
Resumo:
This project has contributed to the ecologically sustainable management of mangrove jack in Australia by providing comprehensive information on its biology, habitat requirements, population parameters and stock structure. Specifically, the project has resulted in an enhanced understanding of the life history of Australian mangrove jack, the levels of exploitation in its local fishery and the likely existence of a single genetic stock throughout Queensland.
Resumo:
Dugongs (Dugong dugon) are marine mammals that obtain nutrients through hindgut fermentation of seagrass, however, the microbes responsible have not been identified. This study used denaturing gradient gel electrophoresis (DGGE) and 454-pyrosequencing to profile hindgut bacterial communities in wild dugongs. Faecal samples obtained from 32 wild dugongs representing four size/maturity classes, and two captive dugongs fed on cos lettuce were screened using DGGE. Partial 16S rRNA gene profiles of hindgut bacteria from wild dugong calves and juveniles were grouped together and were different to those in subadults and adults. Marked differences between hindgut bacterial communities of wild and captive dugongs were also observed, except for a single captive whose profile resembled wild adults following an unsuccessful reintroduction to the wild. Pyrosequencing of hindgut communities in two wild dugongs confirmed the stability of bacterial populations, and Firmicutes (average 75.6% of Operational Taxonomic Units [OTUs]) and Bacteroidetes (19.9% of OTUs) dominated. Dominant genera were Roseburia, Clostridium, and Bacteroides. Hindgut microbial composition and diversity in wild dugongs is affected by ontogeny and probably diet. In captive dugongs, the absence of the dominant bacterial DNA bands identified in wild dugongs is probably dependent upon prevailing diet and other captive conditions such as the use of antibiotics. This study represents a first step in the characterisation of a novel microbial ecosystem-the marine hindgut of Sirenia.
Resumo:
Understanding the life history of exploited fish species is not only critical in developing stock assessments and productivity models, but has a dual function in the delineation of connectivity and geographical population structure. In this study, patterns in growth and length and age at sex change of Polydactylus macrochir, an ecologically and economically important protandrous estuarine teleost, were examined to provide preliminary information on the species' connectivity and geographic structure across northern Australia. Considerable variation in life history parameters was observed among the 18 locations sampled. Both unconstrained and constrained (t(0) = 0) estimates of von Bertalanffy growth function parameters differed significantly among all neighbouring locations with the exception of two locations in Queensland's east coast and two in Queensland's Gulf of Carpentaria waters, respectively. Comparisons of back-calculated length-at-age 2 provided additional evidence for growth differences among some locations, but were not significantly different among locations in the south-eastern Gulf of Carpentaria or on Queensland's east coast. The length and age at sex change differed markedly among locations, with fish from the east coast of Australia changing sex from males to females at significantly greater lengths and ages than elsewhere. Sex change occurred earliest at locations within Queensland's Gulf of Carpentaria, where a large proportion of small, young females were recorded. The observed differences suggest that P. macrochir likely form a number of geographically and/or reproductively distinct groups in Australian waters and suggest that future studies examining connectivity and geographic population structure of estuarine fishes will likely benefit from the inclusion of comparisons of life history parameters. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Common root rot (CRR) and spot blotch, caused by Cochliobolus sativus (Ito and Kurib.) Drechsl. ex Dast., are important diseases of barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) worldwide. However, the population biology of C. sativus is still poorly understood. In this study, the genetic structure of three C. sativus populations, consisting of isolates sampled respectively from barley leaves (BL), barley roots (BR) and wheat roots (WR) in North Dakota, was analysed with amplified fragment length polymorphism (AFLP) markers. A total of 127 AFLP loci were generated among 208 C. sativus isolates analysed with three primer combinations. Gene diversity (H = 0.277-0.335) were high in all three populations. Genetic variation among C. sativus individuals within population accounted for 74%, whereas 26% of the genetic variation was explained among populations. Genetic differentiation was high (empty set PT = 0.261, corrected G ''(st)= 0.39), whereas gene flow (Nm) ranged from 1.27 to 1.56 among the three populations analysed. The multilocus linkage disequilibrium (LD) ((r) over bard = 0.0760.117) was moderate in C. sativus populations. Cluster analyses indicate that C. sativus populations differentiated according to the hosts (barley and wheat) and tissues (root and leaf) although generalists also exist in North Dakota. Crop breeding may benefit from combining genes for resistance against both specialists and generalists of C. sativus.
Resumo:
Multi-species fisheries are complex to manage and the ability to develop an appropriate governance structure is often seriously impeded because trading between sustainability objectives at the species level, economic objectives at the fleet level, and social objectives at the community scale, is complex. Many of these fisheries also tend to have a mix of information, with stock assessments available for some species and almost no information on other species. The fleets themselves comprise fishers from small family enterprises to large vertically integrated businesses. The Queensland trawl fishery in Australia is used as a case study for this kind of fishery. It has the added complexity that a large part of the fishery is within a World Heritage Area, the Great Barrier Reef Marine Park, which is managed by an agency of the Australian Commonwealth Government whereas the fishery itself is managed by the Queensland State Government. A stakeholder elicitation process was used to develop social, governance, economic and ecological objectives, and then weight the relative importance of these. An expert group was used to develop different governance strawmen (or management strategies) and these were assessed by a group of industry stakeholders and experts using multi-criteria decision analysis techniques against the different objectives. One strawman clearly provided the best overall set of outcomes given the multiple objectives, but was not optimal in terms of every objective, demonstrating that even the "best" strawman may be less than perfect. © 2012.
Resumo:
TRFLP (terminal restriction fragment length polymorphism) was used to assess whether management practices that improved disease suppression and/or yield in a 4-year ginger field trial were related to changes in soil microbial community structure. Bacterial and fungal community profiles were defined by presence and abundance of terminal restriction fragments (TRFs), where each TRF represents one or more species. Results indicated inclusion of an organic amendment and minimum tillage increased the relative diversity of dominant fungal populations in a system dependant way. Inclusion of an organic amendment increased bacterial species richness in the pasture treatment. Redundancy analysis showed shifts in microbial community structure associated with different management practices and treatments grouped according to TRF abundance in relation to yield and disease incidence. ANOVA also indicated the abundance of certain TRFs was significantly affected by farming system management practices, and a number of these TRFs were also correlated with yield or disease suppression. Further analyses are required to determine whether identified TRFs can be used as general or soil-type specific bio-indicators of productivity (increased and decreased) and Pythium myriotylum suppressiveness.
Resumo:
Preputial prolapse is an obvious condition affecting bulls from many breeds. Unfortunately, the losses in production and welfare concerns associated with preputial prolapse can remain undetected for long periods of time in the extensive beef areas of northern Australia where the bulls are not inspected regularly. Thus, there is a critical need to identify the structural factors predisposing to preputial prolapse in young bulls so that they can be culled early. Despite there being no firm scientific evidence of an association between preputial eversion and preputial prolapse, it seems logical that the increased exposure of the sensitive prepuce as a consequence of preputial eversion may increase the risk of bulls developing preputial pathology, in particular preputial prolapse. This may be particularly relevant in Bos indicus bulls as they have a more pendulous sheath and thus eversion of the prepuce may be associated with a greater risk of injury to the prepuce compared to that in Bos taurus bulls. Further, studies of preputial eversion in Bos taurus bulls have concluded that there is an association between polledness and increased prevalence and severity (length of everted prepuce and duration of eversion) of preputial eversion due primarily to the absence or poor development of the caudal preputial muscles. No similar definitive work in Bos indicus bulls has been conducted and thus anatomical studies reported in this thesis were conducted to determine if a similar association occurred in Bos indicus bulls. A survey of a sample of large beef breeding herds in northern Australia found that preputial prolapse is a significant problem in Bos indicus and Bos indicus derived bulls and affected both young and older bulls. The importance of preputial prolapse confirmed the value of further research into the causes of this problem. A series of anatomical studies confirmed that preputial eversion in Bos indicus derived bulls was not more prevalent in polled bulls than horned bulls and was not associated with deficiency of the caudal preputial muscles as was established in Bos taurus bulls. An anatomical study of Bos indicus derived bulls with preputial prolapse found that preputial prolapse occurred in horned bulls of varying ages and these bulls did not have any evidence of deficiency in the caudal preputial muscles. However, preputial prolapse was observed in young polled bulls that had poorly developed or absent caudal preputial muscles. It was concluded that deficiency of the caudal preputial muscles in polled Bos indicus derived bulls may predispose to preputial prolapse at an early age, but no predisposing anatomical factors were found for horned Bos indicus derived bulls. In these studies, preputial eversion and preputial prolapse were found in horned Bos indicus derived bulls that did not have any preputial muscle deficiency and it was noted that preputial eversion was not related to the length of the prepuce. Further studies confirmed that preputial eversion was linearly and consistently associated with position of the glans penis within the sheath in Bos indicus derived bulls, and movement of the glans penis towards the preputial orifice consistently resulted in preputial eversion in these bulls. A method to objectively measure the relationship between movement of the glans penis within the sheath and preputial eversion was developed. Studies in humans have linked function of some abdominal muscles to function of the pelvic organs. This relationship was investigated in Bos indicus derived bulls to determine whether the function of specific abdominal muscles affected position of the penis in the sheath. Using the method developed to objectively measure the relationship between penis movement and preputial eversion, the abdominal muscles that potentially were associated with movement of the glans penis or preputial eversion were examined but no significant relationships were observed. In the anatomical study of Bos indicus derived bulls not affected with preputial prolapse a more pendulous sheath was associated with increased prevalence of preputial eversion. This relationship was confirmed for horned and polled bulls in the penis movement studies. Bos indicus derived bulls with more pendulous sheaths evert their prepuces more than bulls with less pendulous sheaths thus increasing the risk of damage to the prepuce either from the environment, other bulls, or from them inadvertently stepping on the everted prepuce when they get to their feet. Culling Bos indicus derived bulls with more pendulous sheaths should reduce the incidence of preputial eversion and possibly preputial prolapse. The anatomical study of Bos indicus derived bulls that did not have preputial prolapse demonstrates that there are herds of bulls where the polled bulls do not have any evidence of deficiency of the caudal preputial iv muscles. There is a need to develop a practical and cost effective test to identify polled Bos indicus bulls that have a deficiency in their caudal preputial muscles.