27 resultados para Department Survey


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improved information on the product quality of the plantation resource is needed to allow businesses to consider investing in the development of value-adding processing facilities. These facilities are likely to require customised design that optimises the utilisation of future small diameter plantation hardwood logs. This log resource will become available as wood supply in Queensland transitions from native forests to 100% from sustainable plantations. This resource will be controlled by plantations established prior to 2000. A survey of the three main growers (former Forest Enterprises Australia Pty Ltd, former Forestry Corporation of New South Wales, Hancock Queensland Plantation Pty Ltd) revealed that C. citriodora subsp.variegata – CCV (28.0%), Eucalyptus dunnii (27.5%), E. pilularis (23.0%), E. grandis (11.3%) and E. cloeziana –GMS (7.1%) were the most widely planted species in the southern Queensland and northern New South Wales subtropical hardwood estate and would potentially dominate the supply of plantation hardwoods to sawmill processing facilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Common coral trout Plectropomus leopardus is an iconic fish of the Great Barrier Reef (GBR) and is the most important fish for the commercial fishery there. Most of the catch is exported live to Asia. This stock assessment was undertaken in response to falls in catch sizes and catch rates in recent years, in order to gauge the status of the stock. It is the first stock assessment ever conducted of coral trout on the GBR, and brings together a multitude of different data sources for the first time. The GBR is very large and was divided into a regional structure based on the Bioregions defined by expert committees appointed by the Great Barrier Reef Marine Park Authority (GBRMPA) as part of the 2004 rezoning of the GBR. The regional structure consists of six Regions, from the Far Northern Region in the north to the Swains and Capricorn–Bunker Regions in the south. Regions also closely follow the boundaries between Bioregions. Two of the northern Regions are split into Subregions on the basis of potential changes in fishing intensity between the Subregions; there are nine Subregions altogether, which include four Regions that are not split. Bioregions are split into Subbioregions along the Subregion boundaries. Finally, each Subbioregion is split into a “blue” population which is open to fishing and a “green” population which is closed to fishing. The fishery is unusual in that catch rates as an indicator of abundance of coral trout are heavily influenced by tropical cyclones. After a major cyclone, catch rates fall for two to three years, and rebound after that. This effect is well correlated with the times of occurrence of cyclones, and usually occurs in the same month that the cyclone strikes. However, statistical analyses correlating catch rates with cyclone wind energy did not provide significantly different catch rate trends. Alternative indicators of cyclone strength may explain more of the catch rate decline, and future work should investigate this. Another feature of catch rates is the phenomenon of social learning in coral trout populations, whereby when a population of coral trout is fished, individuals quickly learn not to take bait. Then the catch rate falls sharply even when the population size is still high. The social learning may take place by fish directly observing their fellows being hooked, or perhaps heeding a chemo-sensory cue emitted by fish that are hooked. As part of the assessment, analysis of data from replenishment closures of Boult Reef in the Capricorn–Bunker Region (closed 1983–86) and Bramble Reef in the Townsville Subregion (closed 1992–95) estimated a strong social learning effect. A major data source for the stock assessment was the large collection of underwater visual survey (UVS) data collected by divers who counted the coral trout that they sighted. This allowed estimation of the density of coral trout in the different Bioregions (expressed as a number of fish per hectare). Combined with mapping data of all the 3000 or so reefs making up the GBR, the UVS results provided direct estimates of the population size in each Subbioregion. A regional population dynamic model was developed to account for the intricacies of coral trout population dynamics and catch rates. Because the statistical analysis of catch rates did not attribute much of the decline to tropical cyclones, (and thereby implied “real” declines in biomass), and because in contrast the UVS data indicate relatively stable population sizes, model outputs were unduly influenced by the unlikely hypothesis that falling catch rates are real. The alternative hypothesis that UVS data are closer to the mark and declining catch rates are an artefact of spurious (e.g., cyclone impact) effects is much more probable. Judging by the population size estimates provided by the UVS data, there is no biological problem with the status of coral trout stocks. The estimate of the total number of Plectropomus leopardus on blue zones on the GBR in the mid-1980s (the time of the major UVS series) was 5.34 million legal-sized fish, or about 8400 t exploitable biomass, with an 2 additional 3350 t in green zones (using the current zoning which was introduced on 1 July 2004). For the offshore regions favoured by commercial fishers, the figure was about 4.90 million legal-sized fish in blue zones, or about 7700 t exploitable biomass. There is, however, an economic problem, as indicated by relatively low catch rates and anecdotal information provided by commercial fishers. The costs of fishing the GBR by hook and line (the only method compatible with the GBR’s high conservation status) are high, and commercial fishers are unable to operate profitably when catch rates are depressed (e.g., from a tropical cyclone). The economic problem is compounded by the effect of social learning in coral trout, whereby catch rates fall rapidly if fishers keep returning to the same fishing locations. In response, commercial fishers tend to spread out over the GBR, including the Far Northern and Swains Regions which are far from port and incur higher travel costs. The economic problem provides some logic to a reduction in the TACC. Such a reduction during good times, such as when the fishery is rebounding after a major tropical cyclone, could provide a net benefit to the fishery, as it would provide a margin of stock safety and make the fishery more economically robust by providing higher catch rates during subsequent periods of depressed catches. During hard times when catch rates are low (e.g., shortly after a major tropical cyclone), a change to the TACC would have little effect as even a reduced TACC would not come close to being filled. Quota adjustments based on catch rates should take account of long-term trends in order to mitigate variability and cyclone effects in data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coccidiosis is a costly enteric disease of chickens caused by protozoan parasites of the genus Eimeria. Disease diagnosis and management is complicated since there are multiple Eimeria species infecting chickens and mixed species infections are common. Current control measures are only partially effective and this, combined with concerns over vaccine efficacy and increasing drug resistance, demonstrates a need for improved coccidiosis diagnosis and control. Before improvements can be made, it is important to understand the species commonly infecting poultry flocks in both backyard and commercial enterprises. The aim of this project was to conduct a survey and assessment of poultry Eimeria across Australia using genetic markers, and create a collection of isolates for each Eimeria species. A total of 260 samples (faecal or caecal) was obtained, and survey results showed that Eimeria taxa were present in 98% of commercial and 81% of backyard flocks. The distribution of each Eimeria species was widespread across Australia, with representatives of all species being found in every state and territory, and the Eimeria species predominating in commercial flocks differed from those in backyard flocks. Three operational taxonomic units also occurred frequently in commercial flocks highlighting the need to understand the impact of these uncharacterised species on poultry production. As Eimeria infections were also frequent in backyard flocks, there is a potential for backyard flocks to act as reservoirs for disease, especially as the industry moves towards free range production systems. This Eimeria collection will be an important genetic resource which is the crucial first step in the development of more sophisticated diagnostic tools and the development of new live vaccines which ultimately will provide savings to the industry in terms of more efficient coccidiosis management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Queensland (QLD) fishery for spanner crabs primarily lands live crab for export overseas, with gross landings valued around A$5 million per year. Quota setting rules are used to assess and adjust total allowable harvest (quota) around an agreed target harvest of 1631 t and capped at a maximum of 2000 t. The quota varies based on catch rate indicators from the commercial fishery and a fishery independent survey. Quota management applies only to ‘Managed Area A’ which includes waters between Rockhampton and the New South Wales (NSW) border. This report has been prepared to inform Fisheries Queensland (Department of Agriculture and Fisheries) and stakeholders of catch trends and the estimated quota of spanner crabs in Managed Area A for the forthcoming annual quota periods (1 June 2016–31 May 2018). The quota calculations followed the methodology developed by the crab fishery Scientific Advisory Group (SAG) between November 2007 and March 2008. The QLD total reported spanner crab harvest was 1170 t for the 2015 calendar year. In 2015, a total of 55 vessels were active in the QLD fishery, down from 262 vessels at the fishery’s peak activity in 1994. Recent spanner crab harvests from NSW waters average about 125 t per year, but fell to 80 t in 2014–2015. The spanner crab Managed Area A commercial standardised catch rate averaged 0.818 kg per net-lift in 2015, 22.5% below the target level of 1.043. Compared to 2014, mean catch rates in 2015 were marginally improved south of Fraser Island. The NSW–QLD survey catch rate in 2015 was 20.541 crabs per ground-line, 33% above the target level of 13.972. This represented an increase in survey catch rates of about four crabs per groundline, compared to the 2014 survey. The QLD spanner crab total allowable harvest (quota) was set at 1923 t in the 2012-13 and 2013-14 fishing years, 1777 t in 2014-15 and 1631 t in 2015-16. The results from the current analysis rules indicate that the quota for the next two fishing years be retained at the base quota of 1631 t.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Australian fishery for spanner crabs is the largest in the world, with the larger Queensland (QLD) sector’s landings primarily exported live overseas and GVP valued ~A$5 million per year. Spanner crabs are unique in that they may live up to 15 years, significantly more than blue swimmer crabs (Portunus armatus) and mud crabs (Scylla serrata), the two other important crab species caught in Queensland. Spanner crabs are caught using a flat net called a dilly, on which the crabs becoming entangled via the swimming legs. Quota setting rules are used to assess and adjust total allowable harvest (quota) around an agreed target harvest of 1631 t and capped at a maximum of 2000 t. The quota varies based on catch rate indicators from the commercial fishery and a fishery-independent survey from the previous two years, compared to target reference points. Quota management applies only to ‘Managed Area A’ which includes waters between Rockhampton and the New South Wales (NSW) border. This report has been prepared to inform Fisheries Queensland (Department of Agriculture and Fisheries) and stakeholders of catch trends and the estimated quota of spanner crabs in Managed Area A for the forthcoming quota period (1 June 2015–31 May 2016). The quota calculations followed the methodology developed by the crab fishery Scientific Advisory Group (SAG) between November 2007 and March 2008. The total reported spanner crab harvest was 917 t for the 2014 calendar year, almost all of which was taken from Managed Area A. In 2014, a total of 59 vessels were active in the QLD fishery, the lowest number since the peak in 1994 of 262 vessels. Recent spanner crab harvests from NSW waters have been about 125 t per year. The spanner crab Managed Area A commercial standardised catch rate averaged 0.739 kg per net-lift in 2014, 24% below the target level of 1.043. Mean catch rates declined in the commercial fishery in 2014, although the magnitude of the decreases was highest in the area north of Fraser Island. The NSW–QLD survey catch rate in 2014 was 16.849 crabs per ground-line, 22% above the target level of 13.972. This represented a decrease in survey catch rates of 0.366 crabs per ground-line, compared to the 2013 survey. The Queensland spanner crab total allowable harvest (quota) was set at 1923 t in 2012 and 2013. In 2014, the quota was calculated at the base level of 1631 t. However, given that the 2012 fisheryindependent survey was not undertaken for financial reasons, stakeholders proposed that the total allowable commercial catch (TACC) be decreased to 1777 t; a level that was halfway between the 2012/13 quota of 1923 t and the recommended base quota of 1631 t. The results from the current analysis indicate that the quota for the 2015-2016 financial year be decreased from 1777 t to the base quota of 1631 t.