22 resultados para Cook, Fred J
Resumo:
Understanding the host range for all of the fruit fly species within the South Pacific region is vital to establishing trade and quarantine protocols. This is important for the countries within the region and their trade partners. A significant aspect of the Australian Centre for International Agricultural Research (ACIAR) and Regional Fruit Fly Projects (RFFP) has been host fruit collecting which has provided information on fruit fly host records in the seven participating countries. This work is still continuing in all project countries at different intensities. In the Cook Islands, Fiji, Tonga and Western Samoa, fruit surveys have assumed a quarantine surveillance role, with a focus on high risk fruits, such as guava, mango, citrus, bananas, cucurbits and solanaceous fruits. In the Solomon Islands, Vanuatu and the Federated States of Micronesia (FSM), fruit surveys are still at the stage where host ranges are far from complete. By the end of the current project a more complete picture of the fruit fly hosts in these countries will have been gained. A brief summary of the data collected to date is as follows: 23 947 fruit samples collected to date; 2181 positive host fruit records; 31 fruit fly species reared from fruit; 12 species reared from commercial fruit. A commercial fruit is classed as an edible fruit with potential for trade at either a local or international level. This allows for the inclusion of endemic fruit species that have cultural significance as a food source. On the basis of these results, there are fruit fly species of major economic importance in the South Pacific region. However, considerably more fruit survey work is required in order to establish a detailed understanding of all the pest species.
Resumo:
Contaminants of man-made and natural origin need to be managed in livestock feeds to protect the health of livestock and that of human consumers of livestock products. This requires access to information on the transfer from feed to food to inform risk profiles and assessments, and to guide management interventions such as regulation or Hazard Analysis Critical Control Point approaches. This paper reviews contaminants of known and potential concern in the production of livestock feeds in Australia and compares existing but differing state and national regulatory standards with international standards. The contaminants considered include man-made organic chemical contaminants (e.g. legacy pesticides), elemental contaminants (e.g. arsenic, cadmium, lead), phytotoxins (e.g. gossypol) and mycotoxins (e.g. aflatoxins). Reference is made to scientific literature and evaluations by regulators to propose maximum levels that can be used for guidance by those involved in managing contamination incidents or developing feed safety programs. © 2013 CSIRO.
Resumo:
In the last decade, Conyza bonariensis has become a widespread and difficult-to-control weed in Australian broad-acre cropping, particularly in glyphosate-based zero-tilled fallows of the subtropical grain region. The first Australian populations of C. bonariensis, where it is known as flaxleaf fleabane, were confirmed resistant to glyphosate in 2010. Control with alternative herbicides in fallows has been inconsistent, with earlier research indicating that weed age could be a potential contributing factor. In two field experiments, the impact of weed age (one, two and three months) was measured on the efficacy of six non-selective herbicide mixtures and sequential applications for control in fallows. In another two experiments we evaluated 11 non-selective herbicides, mixtures and sequential applications applied to one and three month old weeds using higher rates on older weeds. When herbicide rates were consistent for different weed ages, efficacy was reduced only by an average of 1% when two month old weeds were treated compared to one month old weeds. However when applied to three month old weeds, efficacy of treatments was significantly (P < 0.001) reduced by 3-30%. When herbicide rates were increased, weed age had no adverse effect on efficacy, which ranged from 90 to 100%, for amitrole, glyphosate mixed with 2,4-D amine plus picloram, and three sequential application treatments of glyphosate mixtures followed with bipyridyl products. Thus, this problem weed can be controlled effectively and consistently at the rosette stage of one to two months old, or three month old weeds with several different treatments at robust rates. These effective glyphosate alternatives and sequential-application tactics will minimise replenishment of the soil seed-bank and further reduce the risk for further evolution of glyphosate resistance. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Conyza bonariensis is a major weed infesting zero-tilled cropping systems in subtropical Australia, particularly in wheat and winter fallows. Uncontrolled C.bonariensis survives to become a problem weed in the following crops or fallows. As no herbicide has been registered for C.bonariensis in wheat, the effectiveness of 11 herbicides, currently registered for other broad-leaved weeds in wheat, was evaluated in two pot and two field experiments. As previous research showed that the age of C.bonariensis, and to a lesser extent, the soil moisture at spraying affected herbicide efficacy, these factors also were investigated. The efficacy of the majority of herbicide treatments was reduced when large rosettes (5-15cm diameter) were treated, compared with small rosettes (<5cm diameter). However, for the majority of herbicide treatments, the soil moisture did not affect the herbicide efficacy in the pot experiments. In the field, a delay in herbicide treatment of 2 weeks reduced the herbicide efficacy consistently across herbicide treatments, which was related to weed age but not to soil moisture differences. Across all the experiments, four herbicides controlled C.bonariensis in wheat consistently (83-100%): 2,4-D; aminopyralid + fluroxypyr; picloram + MCPA + metsulfuron; and picloram + high rates of 2,4-D. Thus, this problem weed can be effectively and consistently controlled in wheat, particularly when small rosettes are treated, and therefore C.bonariensis will have a less adverse impact on the following fallow or crop.
Resumo:
The cropping region of northern Australia has a diverse range of cropping systems and weed flora. A fallow phase is commonly required between crops to enable the accumulation of stored soil water in these farming systems dominated by reduced tillage. During the fallow phase, weed control is important and is heavily reliant on herbicides. The most commonly used herbicide has been glyphosate. As a result of over-reliance on glyphosate, there are now seven confirmed glyphosate-resistant weeds and several glyphosate-tolerant species common in the region. As a result, the control of summer fallow weeds is become more complex. This paper outlines project work investigating improved weed control for summer fallows in the northern cropping region. Areas of research include weed ecology, chemical and non-chemical tactics, glyphosate resistance and resistance surveys. The project also has an economic and extension component. As a result of our research we have a better understanding of the ecology of major northern weeds and spread of glyphosate resistance in the region. We have identified and defined alternative herbicide and non-chemical approaches for the effective control of summer fallow weeds and have extended our research effectively to industry.
Resumo:
This is a retrospective study of 38 cases of infection by Babesia macropus, associated with a syndrome of anaemia and debility in hand-reared or free-ranging juvenile eastern grey kangaroos (Macropus giganteus) from coastal New South Wales and south-eastern Queensland between 1995 and 2013. Infection with B. macropus is recorded for the first time in agile wallabies (Macropus agilis) from far north Queensland. Animals in which B. macropus infection was considered to be the primary cause of morbidity had marked anaemia, lethargy and neurological signs, and often died. In these cases, parasitised erythrocytes were few or undetectable in peripheral blood samples but were sequestered in large numbers within small vessels of visceral organs, particularly in the kidney and brain, associated with distinctive clusters of extraerythrocytic organisms. Initial identification of this piroplasm in peripheral blood smears and in tissue impression smears and histological sections was confirmed using transmission electron microscopy and molecular analysis. Samples of kidney, brain or blood were tested using PCR and DNA sequencing of the 18S ribosomal RNA and heat shock protein 70 gene using primers specific for piroplasms. The piroplasm detected in these samples had 100 sequence identity in the 18S rRNA region with the recently described Babesia macropus in two eastern grey kangaroos from New South Wales and Queensland, and a high degree of similarity to an unnamed Babesia sp. recently detected in three woylies (Bettongia penicillata ogilbyi) in Western Australia.
Resumo:
The Brigalow Belt bioregion of southern and central Queensland supports a large percentage of northern Australia's sown pastures and beef herd. The Brigalow soils were widely thought to have adequate phosphorus (P) for cropping, sown pastures and grazing animals, which has led to almost no use of P fertiliser on sown pastures. The majority of pastures established in the region were sown with tropical grasses only (i.e. no legumes were sown). Under grass-only pastures, nitrogen (N) mineralisation rates decline with time since establishment as N is 'tied-up' in soil organic matter. This process leads to a significant decline in pasture and animal productivity and is commonly called 'pasture rundown'. Incorporating pasture legumes has been identified as the best long-term solution to improve the productivity of rundown sown grass pastures. Pasture legumes require adequate P to grow well and fix large amounts of N to increase the productivity of rundown sown grass pastures. Producers and farm advisors have traditionally thought that P fertiliser is not cost-effective for legume-based improved pastures growing on inland areas of Queensland despite there being little, if any, data on production responses or their economic outcomes. Recent studies show large and increasing areas of low plant available soil P and large responses by pasture legumes to P fertiliser on Brigalow soils. The economic analysis in this scoping study indicates potential returns of 9–15% on extra funds invested from the application of P fertiliser, when establishing legumes into grass pastures on low P soils (i.e. lower than the critical P requirement of the legume grown). Higher returns of 12–24% may be possible when adding P fertiliser to already established grass/legume pastures on such soils. As these results suggest potential for significant returns from applying P fertiliser on legume pastures, it is recommended that research be conducted to better quantify the impacts of P fertiliser on productivity and profit. Research priorities include: quantifying the animal production and economic impact of fertilising legume-based pastures in the sub-tropics for currently used legumes; quantifying the comparative P requirements and responses of available legume varieties; understanding clay soil responses to applied P fertiliser; testing the P status of herds grazing in the Brigalow Belt; and quantifying the extent of other nutrient deficiencies (e.g. sulphur and potassium) for legume based pastures. Development and extension activities are required to demonstrate the commercial impacts of applying P fertiliser to legume based pastures.