66 resultados para Control of joint structures
Resumo:
New efforts at biological control of Miconia calvescens (Melastomataceae) is a serious invader in the tropical Pacific, including the Hawaiian and Tahitian Islands, and currently poses a major threat to native biodiversity in the Wet Tropics of Australia. The species is fleshy-fruited, small-seeded and shade tolerant, and thus has the potential to be dispersed widely and recruit in relatively intact rainforest habitats, displacing native species. Understanding and predicting the rate of spread is critical for the design and implementation of effective management actions. We used an individual-based model incorporating a dispersal function derived from dispersal curves for similar berry-fruited native species, and life-history parameters of fecundity and mortality to predict the spatial structure of a Miconia population after a 30 year time period. We compared the modelled population spatial structure to that of an actual infestation in the rainforests of north Queensland. Our goal was to assess how well the model predicts actual dispersion and to identify potential barriers and conduits to seed movement and seedling establishment. The model overpredicts overall population size and the spatial extent of the actual infestation, predicting individuals to occur at a maximum 1,750 m from the source compared with the maximum distance of any detected individual in the actual infestation of 1,191 m. We identify several characteristic features of managed invasive populations that make comparisons between modelled outcomes and actual infestations difficult. Our results suggest that the model’s ability to predict both spatial structure and spread of the population will be improved by incorporating a spatially explicit element, with dispersal and recruitment probabilities that reflect the relative suitability of different parts of the landscape for these processes. Mikania micrantha H.B.K. (Asteraceae) in Papua New Guinea and Fiji.
Resumo:
Bill Palmer and colleagues recently published their paper 'Prospects for the biological control of the weedy sporobolus grasses in Australia' in Proceedings of the 16th Australian Weeds Conference. The paper gives a summary of a recent project to find a biological control for the weedy sporobolus grasses, which include giant rat's tail grass. Southern Africa was surveyed for potential agents and two, a leaf smut and a stem wasp, were selected for follow up studies. Unfortunately, they could not rear the stem wasp in the laboratory and the leaf smut infected four of the Australian native Sporobolus spp. and was therefore rejected. This project was one of the first attempts at biological control of a grass.
Resumo:
While the genetic control of wheat processing characteristics such as dough rheology is well understood, limited information is available concerning the genetic control of baking parameters, particularly sponge and dough (S&D) baking. In this study, a quantitative trait loci (QTL) analysis was performed using a population of doubled haploid lines derived from a cross between Australian cultivars Kukri x Janz grown at sites across different Australian wheat production zones (Queensland in 2001 and 2002 and Southern and Northern New South Wales in 2003) in order to examine the genetic control of protein content, protein expression, dough rheology and sponge and dough baking performance. The study highlighted the inconsistent genetic control of protein content across the test sites, with only two loci (3A and 7A) showing QTL at three of the five sites. Dough rheology QTL were highly consistent across the 5 sites, with major effects associated with the Glu-B1 and Glu-D1 loci. The Glu-D1 5 + 10 allele had consistent effects on S&D properties across sites; however, there was no evidence for a positive effect of the high dough strength Glu-B1-al allele at Glu-B1. A second locus on 5D had positive effects on S&D baking at three of five sites. This study demonstrated that dough rheology measurements were poor predictors of S&D quality. In the absence of robust predictive tests, high heritability values for S&D demonstrate that direct selection is the current best option for achieving genetic gain in this product category.
Resumo:
The liana, hiptage (Hiptage benghalensis), is currently invading the wet tropics of northern Queensland and remnant bushland in south-eastern Queensland, Australia. Trials using seven herbicides and three application methods (foliar, basal bark, and cut stump) were undertaken at a site in north Queensland (158 700 hiptage plants ha−1). The foliar-applied herbicides were only effective in controlling the hiptage seedlings. Of the foliar herbicides trialed, dicamba, fluroxypyr, and triclopyr/picloram controlled >75% of the treated seedlings. On the larger plants, the cut stump applications were more effective than the basal bark treatments. Kills of >95% were obtained when the plants were cut close to ground level (5 cm) and treated with herbicides that were mixed with diesel (fluroxypyr and triclopyr/picloram), with water (glyphosate), or were applied neat (picloram). The costings for the cut stump treatment of a hiptage infestation (85 000 plants ha−1), excluding labor, would be $A14 324 ha−1 using picloram and $A5294 ha−1 and $A2676 ha−1, respectively, using glyphosate and fluroxypyr. Foliar application using dicamba for seedling control would cost $A1830 ha−1. The costs range from 2–17 cents per plant depending on the treatment. A lack of hiptage seeds below the soil surface, a high germinability (>98%) of the viable seeds, a low viability (0%) of 2 year old, laboratory-stored fruit, and a seedling density of 0.1 seedlings m−2 12 months after a control program indicate that hiptage might have a short-term seed bank. Protracted recolonization from the seed bank would therefore be unlikely after established seed-producing plants have been controlled.
Resumo:
Despite biocontrol research spanning over 100 years, the hybrid weed, commonly referred to as Lantana camara, is not under adequate control. Host specificity and varietal preference of released agents, climatic suitability of a region for released agents, number of agents introduced and range or area of infestation appear to play a role in limiting biocontrol success. At least one of 41 species of mainly leaf- or flower-feeding insects has been introduced, or spread, to 41 of the 70 countries or regions where lantana occurs. Over half (26) of these species have established, achieving varying levels of herbivory and presumably some degree of control. Accurate taxonomy of the plant and adaptation of potential agents to the host plant are some of the better predictors of at least establishment success. Retrospective analysis of the hosts of introduced biocontrol agents for L. camara show that a greater proportion of agents that were collected from L. camara or Lantana urticifolia established, than agents that were collected from other species of Lantana. Of the introduced agents that had established and were oligophagous, 18 out of 22 established. The proportion of species establishing, declined with the number of species introduced. However, there was no trend when oceanic islands were treated separately from mainland areas and the result is likely an artefact of how introductions have changed over time. A calculated index of the degree of herbivory due to agents known to have caused some damage per country, was not related to land area infested with lantana for mainlands nor for oceanic islands. However, the degree of herbivory is much higher on islands than mainlands. This difference between island and mainland situations may reflect population dynamics in patchy or metapopulation landscapes. Basic systematic studies of the host remain crucial to successful biocontrol, especially of hybrid weeds like L. camara. Potential biocontrol agents should be monophages collected from the most closely related species to the target weed or be phytophages that attack several species of lantana. Suitable agents should be released in the most ideal ecoclimatic area. Since collection of biocontrol agents has been limited to a fraction of the known number of phytophagous species available, biocontrol may be improved by targeting insects that feed on stems and roots, as well as the agents that feed on leaves and flowers.
Resumo:
While the method using specialist herbivores in managing invasive plants (classical biological control) is regarded as relatively safe and cost-effective in comparison to other methods of management, the rarity of strict monophagy among insect herbivores illustrates that, like any management option, biological control is not risk-free. The challenge for classical biological control is therefore to predict risks and benefits a priori. In this study we develop a simulation model that may aid in this process. We use this model to predict the risks and benefits of introducing the chrysomelid beetle Charidotis auroguttata to manage the invasive liana Macfadyena unguis-cati in Australia. Preliminary host-specificity testing of this herbivore indicated that there was limited feeding on a non-target plant, although the non-target was only able to sustain some transitions of the life cycle of the herbivore. The model includes herbivore, target and non-target life history and incorporates spillover dynamics of populations of this herbivore from the target to the non-target under a variety of scenarios. Data from studies of this herbivore in the native range and under quarantine were used to parameterize the model and predict the relative risks and benefits of this herbivore when the target and non-target plants co-occur. Key model outputs include population dynamics on target (apparent benefit) and non-target (apparent risk) and fitness consequences to the target (actual benefit) and non-target plant (actual risk) of herbivore damage. The model predicted that risk to the non-target became unacceptable (i.e. significant negative effects on fitness) when the ratio of target to non-target in a given patch ranged from 1:1 to 3:2. By comparing the current known distribution of the non-target and the predicted distribution of the target we were able to identify regions in Australia where the agent may be pose an unacceptable risk. By considering risk and benefit simultaneously, we highlight how such a simulation modelling approach can assist scientists and regulators in making more objective decisions a priori, on the value of releasing specialist herbivores as biological control agents.
Resumo:
A replicated trial was conducted at Tallegalla in south-east Queensland to assess the effectiveness of a range of control methods for climbing asparagus Asparagus africanus Lam. A total of 18 treatments using mechanical, cut stump, basal bark, foliar spray and splatter gun techniques were trialled with a range of herbicides and application rates. Removing the plant and placing it above the ground surface was most effective in killing climbing asparagus. Basal bark spraying of 24 g triclopyr ester (40 mL Garlon® 600) or 10 g fluroxypyr ester (50 mL Starane® 200) L-1 diesel and the cut stump application of neat diesel or 225 g glyphosate (500 mL Glyphosate CT®) L-1 water offered the best chemical control of climbing asparagus.
Resumo:
A replicated trial to determine effective chemical control methods for the invasive species, basket asparagus (Asparagus aethiopicus L. cv. Sprengeri) was conducted at Currumbin Hill, Queensland, from June 1999 to August 2000. Four herbicides (metsulfuron-methyl, dicamba, glyphosate and diesel) were applied at different times of the year (winter, spring, summer and autumn). Neat diesel applied to adult crowns effectively killed basket asparagus. However, germination of basket asparagus and other weeds was not prevented. An overall spray of 0.06 g metsulfuron-methyl (0.1 g Brush-Off®) + 1 mL BS 1000® L-1 water gave slower but more selective long-term control of basket asparagus when compared to diesel, especially when applied in winter and spring. High rates of foliar applied dicamba were most effective in spring and glyphosate splatter gunned on base of stems in autumn. The combination of increased selectivity, ease of application and likelihood of reduced environmental impacts on native plants, other than coast she-oak (Casuarina equisetifolia L. var. incana Benth.), of metsulfuron-methyl makes it more suitable for controlling large infestations of basket asparagus.
Resumo:
The geometrid caterpillar Isturgia deerraria was imported from Kenya into quarantine facilities in Australia as a potential biological control agent for prickly acacia, Acacia nilotica subsp. indica (Benth.) Brenan (family Mimosaceae). The insect was then tested on 30 plant species presented to neonate larvae as a no-choice cut foliage test and 13 plant species presented as a no-choice potted plant test. In these tests the insect was able to complete its life cycle on 13 native Acacia spp. and also on Acacia farnesiana and the exotic ornamental Delonix regia (family Caesalpiniaceae). The tests supported field observations that the insect has a host range spanning many leguminous species and as such the insect could not be considered for release in Australia.
Resumo:
Cat's claw creeper, a native of South America and an escaped ornamental, is a serious environmental weed in Australia, South Africa and also several other countries. This paper reviews the efforts made over the last decade to bring about its biological control. The paper describes the weed status of cat's claw creeper in both Australia and South Africa. These two countries have cooperated in developing biocontrol projects and insect agents have now been released in both countries. These insects and other potential agents are described and suggestions made for the future direction of the projects.
Resumo:
Shrimp are an important commodity in the international fisheries trade and there is an indication of an increase in worldwide consumption of this crustacean. Salmonella and Listeria have been isolated from shrimps and shrimp products on a regular basis since the 1980s. The continued reporting of the presence of these pathogens in fresh and frozen shrimps, and even in the lightly preserved and ready-to-eat products, indicates that the existing practices used by the manufacturers or processors are insufficient to eliminate these pathogens. This paper reviews the information available on Salmonella and Listeria in shrimp and makes recommendations on control options and avenues for future research in order to improve shrimp safety and quality.
Resumo:
Considerable progress has been made towards the successful classical biological control of many of Australia’s exotic weeds over the past decade. Some 43 new arthropod or pathogen agents were released in 19 projects. Effective biological control was achieved in several projects with the outstanding successes being the control of rubber vine, Cryptostegia grandiflora, and bridal creeper, Asparagus asparagoides. Significant developments also occurred in target prioritization, procedures for target and agent approval, funding, infrastructure and cooperation between agencies. Scientific developments included greater emphasis on climate matching, plant and agent phylogeny, molecular diagnostics, agent prioritization and agent evaluation.
Resumo:
Lantana camara is an environmental weed in the northern North Island of New Zealand. It is an increasingly observed problem in forest margins, coastal scrublands, dunes, plantations and island habitats, and its rapid, uncontrolled growth can create dense impenetrable thickets, suppressing vegetation and bush regeneration. Biological control options are being considered for its management. A strain of the Brazilian rust Prospodium tuberculatum was released against lantana in Australia in 2001. This rust was screened against invasive forms of the weed that occur in New Zealand and was found to be pathogenic under glasshouse conditions. A survey found no evidence that the rust occurs in New Zealand. It is concluded that P. tuberculatum is potentially a suitable agent for the biocontrol of lantana in New Zealand and further research should be carried out prior to importation of the organism.
Resumo:
Ongoing pressure to minimise costs of production, growing markets for low residue and organic wool and meat, resistance to chemicals in louse populations, and the deregistration of diazinon for dipping and jetting have contributed to a move away from routine annual application of lousicides to more integrated approaches to controlling lice. Advances including improved methods for monitoring and detection of lice, an expanded range of louse control products and the availability of a web-accessible suite of decision support tools for wool growers (LiceBossTM) will aid this transition. Possibilities for the future include an on-farm detection test and non-chemical control methods. The design and extension of well-constructed resistance management programs to preserve the effectiveness of recently available new product groups should be a priority.