24 resultados para Collective efficacy
Resumo:
The Australian chicken meat industry requires effective agents for the management of lesser mealworm in broiler houses. The only two appropriate insecticides currently registered are cyfluthrin and spinosad, with gamma cyhalothrin being developed for registration. The industry requires the efficacy of cyfluthrin to be investigated, with progress and adoption of the latter two chemicals. Optimising the efficacy of each chemical and studying them singly and in rotation will, in addition to improving their efficacy, reduce overall insecticide use and improve their cost effectiveness.
Resumo:
The EZ-Ject herbicide system was evaluated as a stem injection method for controlling woody weeds in a range of situations where traditional chemical application methods have limited scope. The equipment was trialled on three Queensland weed species; pond apple (Annona glabra), velvety tree pear (Opuntia tomentosa) and yellow oleander (Cascabela thevetia); at five different cartridge densities (0, 1, 2, 3 and 4) and with two herbicides (glyphosate and imazapyr). Cartridges filled with imazapyr were significantly more effective at controlling the three woody weed species than those filled with glyphosate. Injecting plants with three imazapyr cartridges resulted in plant kills ranging from 93 to 100%, compared with glyphosate kills of 17 to 100%. Pond apple was the most susceptible species, requiring one imazapyr cartridge or two glyphosate cartridges to kill 97 and 92% of the treated plants. Plant mortality increased as the number of cartridges injected increased. Mortality did not differ significantly for treatments receiving three and four imazapyr cartridges, as these cartridge densities met the criterion of injecting one cartridge per 10-cm basal circumference, a criterion recommended by the manufacturers for treating large plants (>6.35 cm in diameter at breast height). The cost of treating a weed infestation of 1500 plants ha–1 with three cartridges per tree is $1070 ha–1, with labour costs accounting for 16% of the total. The high chemical costs would preclude this technique from broad-scale use, but the method could have application for treating woody weeds in sensitive, high conservation areas.
Resumo:
Siam Weed (Chromoleana odorata) is the target of an eradication program in north Queensland; however some infestations occur on ground inaccessible to high volume, ground based herbicide spray equipment. Four foliar herbicides were applied to dense infestations of mature Siam Weed in March 2009, near Townsville, north Queensland. Low volume, high concentration solutions containing 40 g L-1 a.i. glyphosate, 1.2 g L-1 a.i metsulfuron-methyl, 10 g L-1 a.i. fluroxypyr + 0.7 g L-1 a.i. aminopyralid and 15 g L-1 a.i. triclopyr + 5 g L-1 a.i. picloram + 0.4 g L-1 a.i. aminopyralid were applied using a 5 L backpack and hand gun (or splatter gun). Relatively small amounts (approximately 24-28 mL) of the high concentration solutions were applied to each bush and assessments of the replicated treated and untreated control plots were conducted 76, 207 and 356 days after treatment. These assessments demonstrated that the fluroxypyr and triclopyr based herbicides controlled 96 to 100% of plants. The metsulfuron-methyl and glyphosate based herbicides controlled 40 and 57% of plants respectively 12 months after treatment, when 3% of untreated control plants were dead. The trial demonstrated that this application method and either of two herbicides provides an additional tool for controlling Siam weed in remote areas, which are inaccessible to traditional higher volume foliar herbicide applications. Lower volume herbicide solutions reduce the volume of water and thus the effort needed to effectively treat less accessible infestations.
Resumo:
Increasing resistance to phosphine (PH 3) in insect pests, including lesser grain borer (Rhyzopertha dominica) has become a critical issue, and development of effective and sustainable strategies to manage resistance is crucial. In practice, the same grain store may be fumigated multiple times, but usually for the same exposure period and concentration. Simulating a single fumigation allows us to look more closely at the effects of this standard treatment.We used an individual-based, two-locus model to investigate three key questions about the use of phosphine fumigant in relation to the development of PH 3 resistance. First, which is more effective for insect control; long exposure time with a low concentration or short exposure period with a high concentration? Our results showed that extending exposure duration is a much more efficient control tactic than increasing the phosphine concentration. Second, how long should the fumigation period be extended to deal with higher frequencies of resistant insects in the grain? Our results indicated that if the original frequency of resistant insects is increased n times, then the fumigation needs to be extended, at most, n days to achieve the same level of insect control. The third question is how does the presence of varying numbers of insects inside grain storages impact the effectiveness of phosphine fumigation? We found that, for a given fumigation, as the initial population number was increased, the final survival of resistant insects increased proportionally. To control initial populations of insects that were n times larger, it was necessary to increase the fumigation time by about n days. Our results indicate that, in a 2-gene mediated resistance where dilution of resistance gene frequencies through immigration of susceptibles has greater effect, extending fumigation times to reduce survival of homozygous resistant insects will have a significant impact on delaying the development of resistance. © 2012 Elsevier Ltd.
Resumo:
Postharvest treatments with nano-silver (NS) significantly improve water relations and therefore prolong the vase life of several cut flowers, including rose (Rosa hybrida cv. Movie Star). The efficacy of NS in alleviating bacterial related blockage in the stem-ends of cut cv. Movie Star was further investigated. Four dominant bacteria strains Pseudomonas fluorescens, Aeromonas sp., Comamonas acidovorans and Chryseomonas luteola were isolated from the stem-ends of cut roses. High numbers of the isolated bacteria at 10 8colony forming unitsmL -1 vase solution led to a sharp reduction in vase life, flower fresh weight, and water uptake. In vitro assessments of the antibacterial activity of NS against the four bacterial strains was >80% at 5mgL -1 and nearly 100% at 50mgL -1. Bacterial blockage in the stem-ends of cut cv. Movie Star roses with and without NS pulse treatments was assessed during the vase period using scanning electron microscopy. Following a 50mgL -1 NS pulse treatment, there were few bacterial cells on the cut surface of the stems even on day 7. Moreover, no obvious bacterial blockage was observed inside the xylem vessels. In contrast, the cut surface of control stems was covered with bacteria and associated amorphous substances, and numerous bacteria were found in the xylem vessels. © 2012 Elsevier B.V.
Resumo:
The recombinant Bm86-based tick vaccines have shown their efficacy for the control of cattle ticks, Rhipicephalus (Boophilus) microplus and R. annulatus infestations. However, cattle ticks often co-exist with multi-host ticks such as Hyalomma and Amblyomma species, thus requiring the control of multiple tick infestations for cattle and other hosts. Vaccination trials using a R. microplus recombinant Bm86-based vaccine were conducted in cattle and camels against Hyalomma dromedarii and in cattle against Amblyomma cajennense immature and adult ticks. The results showed an 89% reduction in the number of H. dromedarii nymphs engorging on vaccinated cattle, and a further 32% reduction in the weight of the surviving adult ticks. In vaccinated camels, a reduction of 27% and 31% of tick engorgement and egg mass weight, respectively was shown, while egg hatching was reduced by 39%. However, cattle vaccination with Bm86 did not have an effect on A. cajennense tick infestations. These results showed that Bm86 vaccines are effective against R. microplus and other tick species but improved vaccines containing new antigens are required to control multiple tick infestations. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Options for the integrated management of white blister (caused by Albugo candida) of Brassica crops include the use of well timed overhead irrigation, resistant cultivars, programs of weekly fungicide sprays or strategic fungicide applications based on the disease risk prediction model, Brassica(spot)(TM). Initial systematic surveys of radish producers near Melbourne, Victoria, indicated that crops irrigated overhead in the morning (0800-1200 h) had a lower incidence of white blister than those irrigated overhead in the evening (2000-2400 h). A field trial was conducted from July to November 2008 on a broccoli crop located west of Melbourne to determine the efficacy and economics of different practices used for white blister control, modifying irrigation timing, growing a resistant cultivar and timing spray applications based on Brassica(spot)(TM). Growing the resistant cultivar, 'Tyson', instead of the susceptible cultivar, 'Ironman', reduced disease incidence on broccoli heads by 99 %. Overhead irrigation at 0400 h instead of 2000 h reduced disease incidence by 58 %. A weekly spray program or a spray regime based on either of two versions of the Brassica(spot)(TM) model provided similar disease control and reduced disease incidence by 72 to 83 %. However, use of the Brassica(spot)(TM) models greatly reduced the number of sprays required for control from 14 to one or two. An economic analysis showed that growing the more resistant cultivar increased farm profit per ha by 12 %, choosing morning irrigation by 3 % and using the disease risk predictive models compared with weekly sprays by 15 %. The disease risk predictive models were 4 % more profitable than the unsprayed control.
Resumo:
A field study was established to evaluate oxadiargyl and pendimethalin during the wet seasons in Bangladesh in 2012 and 2013. The study evaluated the following treatments: oxadiargyl applied at 80, 120, and 160 g ai ha−1; pendimethalin at 800, 1200, and 1600 g ai ha−1; partial weedy; and weed-free. Rice plant density was greatly affected by weed control treatment. Lower density and lower uniformity of the rice plant stand occurred as a result of increased rates of herbicides. Increased rates of pendimethalin were more toxic than increased rates of oxadiargyl. Both herbicides effectively controlled Digitaria ciliaris, Echinochloa colona, and Phyllanthus niruri; however, they were unable to control Murdannia nudiflora. Oxadiargyl controlled Cyperus rotundus across rates by 31–55%, but pendimethalin was completely ineffective on it, and higher rates of both herbicides had no effect in controlling this weed. Both herbicides at higher rates reduced total weed biomass significantly. Among herbicide treatments, the highest yield (3.7–4.0 t ha−1) was recorded in plots treated with oxadiargyl at 160 g ai ha−1 and the lowest yield (2.4–2.8 t ha−1) was in plots treated with pendimethalin at 1600 g ai ha−1. Results from our study suggest that a higher rate of oxadiargyl can increase yield by suppressing weeds in dry-seeded rice systems. Similar to the results of oxadiargyl, pendimethalin at higher rates also greatly suppressed weeds; however, yield decreased due to phytotoxicity to rice seedlings.
Resumo:
This greenhouse study investigated the efficacy of acibenzolar-S-methyl (Bion®) treatment of lower leaves of passionfruit, (Passiflora edulis f. sp. flavicarpa), on Passionfruit woodiness disease and activities of two pathogenesis-related proteins, chitinase and β-1,3-glucanase after inoculation with passionfruit woodiness virus (PWV). All Bion® concentrations reduced disease symptoms, but the concentration of 0.025 g active ingredient (a.i.)/l was the most effective, reducing disease severity in systemic leaves by 23, 29 and 30 compared with water-treated controls at 30, 40 and 50 days post inoculation (dpi) with PWV, respectively. Correspondingly, relative virus concentration as determined by DAS-ELISA in the upper, untreated leaves (new growth) above the site of inoculation at 50 dpi was reduced by 17 and 22 in plants treated with 0.025 and 0.05 g a.i./l, respectively. Bion® treatment and subsequent inoculation with PWV increased chitinase and β-1,3-glucanase activities in the new leaves above the site of inoculation at 30 dpi with PWV. It was concluded that optimal protective Bion® treatment concentrations were 0.025 and 0.05 g a.i./l.