23 resultados para COVERED POLYSTYRENE MICROSPHERES
Resumo:
In wheat, tillering and water-soluble carbohydrates (WSCs) in the stem are potential traits for adaptation to different environments and are of interest as targets for selective breeding. This study investigated the observation that a high stem WSC concentration (WSCc) is often related to low tillering. The proposition tested was that stem WSC accumulation is plant density dependent and could be an emergent property of tillering, whether driven by genotype or by environment. A small subset of recombinant inbred lines (RILs) contrasting for tillering was grown at different plant densities or on different sowing dates in multiple field experiments. Both tillering and WSCc were highly influenced by the environment, with a smaller, distinct genotypic component; the genotypeenvironment range covered 350750 stems m(2) and 25210mg g(1) WSCc. Stem WSCc was inversely related to stem number m(2), but genotypic rankings for stem WSCc persisted when RILs were compared at similar stem density. Low tilleringhigh WSCc RILs had similar leaf area index, larger individual leaves, and stems with larger internode cross-section and wall area when compared with high tilleringlow WSCc RILs. The maximum number of stems per plant was positively associated with growth and relative growth rate per plant, tillering rate and duration, and also, in some treatments, with leaf appearance rate and final leaf number. A common threshold of the red:far red ratio (0.390.44; standard error of the difference0.055) coincided with the maximum stem number per plant across genotypes and plant densities, and could be effectively used in crop simulation modelling as a ocut-off' rule for tillering. The relationship between tillering, WSCc, and their component traits, as well as the possible implications for crop simulation and breeding, is discussed.
Resumo:
Postharvest treatments with nano-silver (NS) significantly improve water relations and therefore prolong the vase life of several cut flowers, including rose (Rosa hybrida cv. Movie Star). The efficacy of NS in alleviating bacterial related blockage in the stem-ends of cut cv. Movie Star was further investigated. Four dominant bacteria strains Pseudomonas fluorescens, Aeromonas sp., Comamonas acidovorans and Chryseomonas luteola were isolated from the stem-ends of cut roses. High numbers of the isolated bacteria at 10 8colony forming unitsmL -1 vase solution led to a sharp reduction in vase life, flower fresh weight, and water uptake. In vitro assessments of the antibacterial activity of NS against the four bacterial strains was >80% at 5mgL -1 and nearly 100% at 50mgL -1. Bacterial blockage in the stem-ends of cut cv. Movie Star roses with and without NS pulse treatments was assessed during the vase period using scanning electron microscopy. Following a 50mgL -1 NS pulse treatment, there were few bacterial cells on the cut surface of the stems even on day 7. Moreover, no obvious bacterial blockage was observed inside the xylem vessels. In contrast, the cut surface of control stems was covered with bacteria and associated amorphous substances, and numerous bacteria were found in the xylem vessels. © 2012 Elsevier B.V.
Resumo:
This study aimed to unravel the effects of climate, topography, soil, and grazing management on soil organic carbon (SOC) stocks in the grazing lands of north-eastern Australia. We sampled for SOC stocks at 98 sites from 18 grazing properties across Queensland, Australia. These samples covered four nominal grazing management classes (Continuous, Rotational, Cell, and Exclosure), eight broad soil types, and a strong tropical to subtropical climatic gradient. Temperature and vapour-pressure deficit explained >80% of the variability of SOC stocks at cumulative equivalent mineral masses nominally representing 0-0.1 and 0-0.3m depths. Once detrended of climatic effects, SOC stocks were strongly influenced by total standing dry matter, soil type, and the dominant grass species. At 0-0.3m depth only, there was a weak negative association between stocking rate and climate-detrended SOC stocks, and Cell grazing was associated with smaller SOC stocks than Continuous grazing and Exclosure. In future, collection of quantitative information on stocking intensity, frequency, and duration may help to improve understanding of the effect of grazing management on SOC stocks. Further exploration of the links between grazing management and above- and below-ground biomass, perhaps inferred through remote sensing and/or simulation modelling, may assist large-area mapping of SOC stocks in northern Australia. © CSIRO 2013.
Resumo:
Measurement of individual emission sources (e.g., animals or pen manure) within intensive livestock enterprises is necessary to test emission calculation protocols and to identify targets for decreased emissions. In this study, a vented, fabric-covered large chamber (4.5 × 4.5 m, 1.5 m high; encompassing greater spatial variability than a smaller chamber) in combination with on-line analysis (nitrous oxide [N2O] and methane [CH4] via Fourier Transform Infrared Spectroscopy; 1 analysis min-1) was tested as a means to isolate and measure emissions from beef feedlot pen manure sources. An exponential model relating chamber concentrations to ambient gas concentrations, air exchange (e.g., due to poor sealing with the surface; model linear when ≈ 0 m3 s-1), and chamber dimensions allowed data to be fitted with high confidence. Alternating manure source emission measurements using the large-chamber and the backward Lagrangian stochastic (bLS) technique (5-mo period; bLS validated via tracer gas release, recovery 94-104%) produced comparable N2O and CH4 emission values (no significant difference at P < 0.05). Greater precision of individual measurements was achieved via the large chamber than for the bLS (mean ± standard error of variance components: bLS half-hour measurements, 99.5 ± 325 mg CH4 s-1 and 9.26 ± 20.6 mg N2O s-1; large-chamber measurements, 99.6 ± 64.2 mg CH4 s-1 and 8.18 ± 0.3 mg N2O s-1). The large-chamber design is suitable for measurement of emissions from manure on pen surfaces, isolating these emissions from surrounding emission sources, including enteric emissions. © © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Resumo:
Sustainable management of native pastures requires an understanding of what the bounds of pasture composition, cover and soil surface condition are for healthy pastoral landscapes to persist. A survey of 107 Aristida/Bothriochloa pasture sites in inland central Queensland was conducted. The sites were chosen for their current diversity of tree cover, apparent pasture condition and soil type to assist in setting more objective bounds on condition ‘states’ in such pastures. Assessors’ estimates of pasture condition were strongly correlated with herbage mass (r = 0.57) and projected ground cover (r = 0. 58), and moderately correlated with pasture crown cover (r = 0.35) and tree basal area (r = 0.32). Pasture condition was not correlated with pasture plant density or the frequency of simple guilds of pasture species. The soil type of Aristida/Bothriochloa pasture communities was generally hard-setting, low in cryptogam cover but moderately covered with litter and projected ground cover (30–50%). There was no correlation between projected ground cover of pasture and estimated ground-level cover of plant crowns. Tree basal area was correlated with broad categories of soil type, probably because greater tree clearing has occurred on the more fertile, heavy-textured clay soils. Of the main perennial grasses, some showed strong soil preferences, for example Tripogon loliiformis for hard-setting soils and Dichanthium sericeum for clays. Common species, such as Chrysopogon fallax and Heteropogon contortus, had no strong soil preference. Wiregrasses (Aristida spp.) tended to be uncommon at both ends of the estimated pasture condition scale whereas H. contortus was far more common in pastures in good condition. Sedges (Cyperaceae) were common on all soil types and for all pasture condition ratings. Plants identified as increaser species were Tragus australianus, daisies (Asteraceae) and potentially toxic herbaceous legumes such as Indigofera spp. and Crotalaria spp. Pasture condition could not be reliably predicted based on the abundance of a single species or taxon but there may be scope for using integrated data for four to five ecologically contrasting plants such as Themeda triandra with daisies, T. loliiformis and flannel weeds (Malvaceae).
Resumo:
Summer in the Persian Gulf region presents physiological challenges for Australian sheep that are part of the live export supply chain coming from the Australian winter. Many feedlots throughout the Gulf have very high numbers of animals during June to August in order to cater for the increased demand for religious festivals. From an animal welfare perspective it is important to understand the necessary requirements of feed and water trough allowances, and the amount of pen space required, to cope with exposure to these types of climatic conditions. This study addresses parameters that are pertinent to the wellbeing of animals arriving in the Persian Gulf all year round. Three experiments were conducted in a feedlot in the Persian Gulf between March 2010 and February 2012, totalling 44 replicate pens each with 60 or 100 sheep. The applied treatments covered animal densities, feed-bunk lengths and water trough lengths. Weights, carcass attributes and health status were the key recorded variables. Weight change results showed superior performance for animal densities of ≥1.2 m2/head during hot conditions (24-h average temperatures greater than 33 °C, or a diurnal range of around 29–37 °C). However the space allowance for animals can be decreased, with no demonstrated detrimental effect, to 0.6 m2/head under milder conditions. A feed-bunk length of ≥5 cm/head is needed, as 2 cm/head showed significantly poorer animal performance. When feeding at 90 ad libitum 10 cm/head was optimal, however under a maintenance feeding regime (1 kg/head/day) 5 cm/head was adequate. A minimum water trough allowance of 1 cm/head is required. However, this experiment was conducted during milder conditions, and it may well be expected that larger water trough lengths would be needed in hotter conditions. Carcass weights were determined mainly by weights at feedlot entry and subsequent weight gains, while dressing percentage was not significantly affected by any of the applied treatments. There was no demonstrated effect of any of the treatments on the number of animals that died, or were classified as unwell. However, across all the treatments, these animals lost significantly more weight than the healthy animals, so the above recommendations, which are aimed at maintaining weight, should also be applicable for good animal health and welfare. Therefore, best practice guidelines for managing Australian sheep in Persian Gulf feedlots in the hottest months (June–August) which present the greatest environmental and physical challenge is to allow feed-bunk length 5 cm/head on a maintenance-feeding program and 10 cm/head for 90 ad libitum feeding, and the space allowance per animal should be ≥1.2 m2/head. Water trough allocation should be at least 1 cm/head with provision for more in the summer when water intake potentially doubles.
Resumo:
Summer in the Persian Gulf region presents physiological challenges for Australian sheep that are part of the live export supply chain coming from the Australian winter. Many feedlots throughout the Gulf have very high numbers of animals during June to August in order to cater for the increased demand for religious festivals. From an animal welfare perspective it is important to understand the necessary requirements of feed and water trough allowances, and the amount of pen space required, to cope with exposure to these types of climatic conditions. This study addresses parameters that are pertinent to the wellbeing of animals arriving in the Persian Gulf all year round. Three experiments were conducted in a feedlot in the Persian Gulf between March 2010 and February 2012, totalling 44 replicate pens each with 60 or 100 sheep. The applied treatments covered animal densities, feed-bunk lengths and water trough lengths. Weights, carcass attributes and health status were the key recorded variables. Weight change results showed superior performance for animal densities of ≥1.2 m2/head during hot conditions (24-h average temperatures greater than 33 °C, or a diurnal range of around 29–37 °C). However the space allowance for animals can be decreased, with no demonstrated detrimental effect, to 0.6 m2/head under milder conditions. A feed-bunk length of ≥5 cm/head is needed, as 2 cm/head showed significantly poorer animal performance. When feeding at 90% ad libitum 10 cm/head was optimal, however under a maintenance feeding regime (1 kg/head/day) 5 cm/head was adequate. A minimum water trough allowance of 1 cm/head is required. However, this experiment was conducted during milder conditions, and it may well be expected that larger water trough lengths would be needed in hotter conditions. Carcass weights were determined mainly by weights at feedlot entry and subsequent weight gains, while dressing percentage was not significantly affected by any of the applied treatments. There was no demonstrated effect of any of the treatments on the number of animals that died, or were classified as unwell. However, across all the treatments, these animals lost significantly more weight than the healthy animals, so the above recommendations, which are aimed at maintaining weight, should also be applicable for good animal health and welfare. Therefore, best practice guidelines for managing Australian sheep in Persian Gulf feedlots in the hottest months (June–August) which present the greatest environmental and physical challenge is to allow feed-bunk length 5 cm/head on a maintenance-feeding program and 10 cm/head for 90% ad libitum feeding, and the space allowance per animal should be ≥1.2 m2/head. Water trough allocation should be at least 1 cm/head with provision for more in the summer when water intake potentially doubles.
Resumo:
Maize grown in eastern and southern Africa experiences random occurrences of drought. This uncertainty creates difficulty in developing superior varieties and their agronomy. Characterisation of drought types and their frequencies could help in better defining selection environments for improving resistance to drought. We used the well tested APSIM maize model to characterise major drought stress patterns and their frequencies across six countries of the region including Ethiopia, Kenya, Tanzania, Malawi, Mozambique and Zimbabwe. The database thus generated covered 35 sites, 17 to 86 years of daily climate records, 3 varieties and 3 planting densities from a total of 11,174 simulations. The analysis identified four major drought environment types including those characterised by low-stress which occurred in 42% of the years, mid-season drought occurring in 15% of the years, late-terminal stress which occurred in 22% of the years and early-terminal drought occurring in 21% of the years. These frequencies varied in relation to sites, genotypes and management. The simulations showed that early terminal stress could result in a yield reduction of 70% compared with low-stress environmental types. The study presents the importance of environmental characterization in contributing to maize improvement in eastern and southern Africa.