17 resultados para Botulinum toxin-A


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indospicine is a non-proteinogenic amino acid which occurs in Indigofera species with widespread prevalence in grazing pastures across tropical Africa, Asia, Australia, and the Americas. It accumulates in the tissues of grazing livestock after ingestion of Indigofera. It is a competitive inhibitor of arginase and causes both liver degeneration and abortion. Indospicine hepatoxicity occurs universally across animal species but the degree varies considerably between species, with dogs being particularly sensitive. The magnitude of canine sensitivity is such that ingestion of naturally indospicine-contaminated horse and camel meat has caused secondary poisoning of dogs, raising significant industry concern. Indospicine impacts on the health and production of grazing animals per se has been less widely documented. Livestock grazing Indigofera have a chronic and cumulative exposure to this toxin, with such exposure experimentally shown to induce both hepatotoxicity and embryo-lethal effects in cattle and sheep. In extensive pasture systems, where animals are not closely monitored, the resultant toxicosis may well occur after prolonged exposure but either be undetected, or even if detected not be attributable to a particular cause. Indospicine should be considered as a possible cause of animal poor performance, particularly reduced weight gain or reproductive losses, in pastures where Indigofera are prevalent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indospicine toxicosis was reported in sheep, goats and cattle fed on Indigofera, a leguminous plant rich in indospicine. Recent death report on dogs as a result of dietary ingestion of indospicine contaminated camel meat has raised concern about the distribution of this toxin in camels fed on Indigofera. This in vitro study aimed at measuring the degradability of indospicine in Indigofera spicata by camel-foregut fluid and attempted at explaining indospicine accumulation in meat tissue. In the first experiment, in vitro dry matter digestibility and indospicine disappearance were evaluated by using foregut fluid from 15 feral camels. Foregut fluid was collected post mortem from a nearby abattoir. In the second experiment, a composite foregut fluid obtained from three feral camels was used to examine the time-dependent degradation of indospicine. Results indicated that 99 of the dietary indospicine was degraded after 48 h of incubation. The time-dependent degradation study showed rapid degradation (11 µg/h) during the first 18 h of incubation, followed by a much slower rate (2 µg/h) between 18-48 h. Results demonstrated the ability of the camel microbiota to degrade indospicine and suggest the presence of a by-pass mechanism that enables the toxin to escape degradation and reaches the intestine.