67 resultados para Beef cattle - Carcasses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

For accurate calculation of reductions in greenhouse-gas (GHG) emissions, methodologies under the Australian Government's Carbon Farming Initiative (CFI) depend on a valid assessment of the baseline and project emissions. Life-cycle assessments (LCAs) clearly show that enteric methane emitted from the rumen of cattle and sheep is the major source of GHG emissions from livestock enterprises. Where a historic baseline for a CFI methodology for livestock is required, the use of simulated data for cow-calf enterprises at six sites in southern Australia demonstrated that a 5-year rolling emission average will provide an acceptable trade off in terms of accuracy and stability, but this is a much shorter time period than typically used for LCA. For many CFI livestock methodologies, comparative or pair-wise baselines are potentially more appropriate than historic baselines. A case study of lipid supplementation of beef cows over winter is presented. The case study of a control herd of 250 cows used a comparative baseline derived from simple data on livestock numbers and class of livestock to quantify the emission abatement. Compared with the control herd, lipid supplementation to cows over winter increased livestock productivity, total livestock production and enterprise GHG emissions from 990 t CO2-e to 1022 t CO2-e. Energy embodied in the supplement and extra diesel used in transporting the supplement diminished the enteric-methane abatement benefit of lipid supplementation. Reducing the cow herd to 238 cows maintained the level of livestock production of the control herd and reduced enterprise emissions to 938 t CO2-e, but was not cost effective under the assumptions of this case study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies of greenhouse gas emissions (GHGE) from beef production systems in northern Australia have been based on models of ‘steady-state’ herd structures that do not take into account the considerable inter-annual variation in liveweight gain, reproduction and mortality rates that occurs due to seasonal conditions. Nor do they consider the implications of flexible stocking strategies designed to adapt these production systems to the highly variable climate. The aim of the present study was to quantify the variation in total GHGE (t CO2e) and GHGE intensity (t CO2e/t liveweight sold) for the beef industry in northern Australia when variability in these factors was considered. A combined GRASP–Enterprise modelling platform was used to simulate a breeding–finishing beef cattle property in the Burdekin River region of northern Queensland, using historical climate data from 1982–2011. GHGE was calculated using the method of Australian National Greenhouse Gas Inventory. Five different stocking-rate strategies were simulated with fixed stocking strategies at moderate and high rates, and three flexible stocking strategies where the stocking rate was adjusted annually by up to 5%, 10% or 20%, according to pasture available at the end of the growing season. Variation in total annual GHGE was lowest in the ‘fixed moderate’ (~9.5 ha/adult equivalent (AE)) stocking strategy, ranging from 3799 to 4471 t CO2e, and highest in the ‘fixed high’ strategy (~5.9 ha/AE), which ranged from 3771 to 7636 t CO2e. The ‘fixed moderate’ strategy had the least variation in GHGE intensity (15.7–19.4 t CO2e/t liveweight sold), while the ‘flexible 20’ strategy (up to 20% annual change in AE) had the largest range (10.5–40.8 t CO2e/t liveweight sold). Across the five stocking strategies, the ‘fixed moderate’ stocking-rate strategy had the highest simulated perennial grass percentage and pasture growth, highest average rate of liveweight gain (121 kg/steer), highest average branding percentage (74%) and lowest average breeding-cow mortality rate (3.9%), resulting in the lowest average GHGE intensity (16.9 t CO2e/t liveweight sold). The ‘fixed high’ stocking rate strategy (~5.9 ha/AE) performed the poorest in each of these measures, while the three flexible stocking strategies were intermediate. The ‘fixed moderate’ stocking strategy also yielded the highest average gross margin per AE carried and per hectare. These results highlight the importance of considering the influence of climate variability on stocking-rate management strategies and herd performance when estimating GHGE. The results also support a body of previous work that has recommended the adoption of moderate stocking strategies to enhance the profitability and ecological stability of beef production systems in northern Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grain finishing of cattle has become increasingly common in Australia over the past 30 years. However, interest in the associated environmental impacts and resource use is increasing and requires detailed analysis. In this study we conducted a life cycle assessment (LCA) to investigate impacts of the grain-finishing stage for cattle in seven feedlots in eastern Australia, with a particular focus on the feedlot stage, including the impacts from producing the ration, feedlot operations, transport, and livestock emissions while cattle are in the feedlot (gate-to-gate). The functional unit was 1 kg of liveweight gain (LWG) for the feedlot stage and results are included for the full supply chain (cradle-to-gate), reported per kilogram of liveweight (LW) at the point of slaughter. Three classes of cattle produced for different markets were studied: short-fed domestic market (55–80 days on feed), mid-fed export (108–164 days on feed) and long-fed export (>300 days on feed). In the feedlot stage, mean fresh water consumption was found to vary from 171.9 to 672.6 L/kg LWG and mean stress-weighted water use ranged from 100.9 to 193.2 water stress index eq. L/kg LWG. Irrigation contributed 57–91% of total fresh water consumption with differences mainly related to the availability of irrigation water near the feedlot and the use of irrigated feed inputs in rations. Mean fossil energy demand ranged from 16.5 to 34.2 MJ lower heating values/kg LWG and arable land occupation from 18.7 to 40.5 m2/kg LWG in the feedlot stage. Mean greenhouse gas (GHG) emissions in the feedlot stage ranged from 4.6 to 9.5 kg CO2-e/kg LWG (excluding land use and direct land-use change emissions). Emissions were dominated by enteric methane and contributions from the production, transport and milling of feed inputs. Linear regression analysis showed that the feed conversion ratio was able to explain >86% of the variation in GHG intensity and energy demand. The feedlot stage contributed between 26% and 44% of total slaughter weight for the classes of cattle fed, whereas the contribution of this phase to resource use varied from 4% to 96% showing impacts from the finishing phase varied considerably, compared with the breeding and backgrounding. GHG emissions and total land occupation per kilogram of LWG during the grain finishing phase were lower than emissions from breeding and backgrounding, resulting in lower life-time emissions for grain-finished cattle compared with grass finishing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In current simulation packages for the management of extensive beef-cattle enterprises, the relationships for the key biological rates (namely conception and mortality) are quite rudimentary. To better estimate these relationships, cohort-level data covering 17 100 cow-years from six sites across northern Australia were collated and analysed. Further validation data, from 7200 cow-years, were then used to test these relationships. Analytical problems included incomplete and non-standardised data, considerable levels of correlation among the 'independent' variables, and the close similarity of alternate possible models. In addition to formal statistical analyses of these data, the theoretical equations for predicting mortality and conception rates in the current simulation models were reviewed, and then reparameterised and recalibrated where appropriate. The final models explained up to 80% of the variation in the data. These are now proposed as more accurate and useful models to be used in the prediction of biological rates in simulation studies for northern Australia. © The State of Queensland (through the Department of Agriculture, Fisheries and Forestry) 2012. © CSIRO.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To examine healthy slaughter-age cattle and sheep on-farm for the excretion of Salmonella serovars in faeces and to identify possible risk factors using a questionnaire. The study involved 215 herds and flocks in the four eastern states of Australia, 56 with prior history of salmonellosis. Production systems examined included pasture beef cattle, feedlot beef cattle, dairy cattle, prime lambs and mutton sheep and animals were all at slaughter age. From each herd or flock, 25 animals were sampled and the samples pooled for Salmonella culture. All Salmonella isolated were serotyped and any Salmonella Typhimurium isolates were phage typed. Questionnaires on each production system, prepared in Epi Info 6.04, were designed to identify risk factors associated with Salmonella spp excretion, with separate questionnaires designed for each production system. Salmonellae were identified in all production systems and were more commonly isolated from dairies and beef feedlots than other systems. Statistical analysis revealed that dairy cattle were significantly more likely to shed Salmonella in faeces than pasture beef cattle, mutton sheep and prime lambs (P < 0.05). A wide diversity of Salmonella serovars, all of which have been isolated from humans in Australia, was identified in both cattle and sheep. Analysis of the questionnaires showed access to new arrivals was a significant risk factor for Salmonella excretion on dairy properties. For beef feedlots, the presence of large numbers of flies in the feedlot pens or around stored manure were significant risk factors for Salmonella excretion. Dairy cattle pose the highest risk of all the slaughter-age animals tested. Some of the identified risk factors can be overcome by improved management practices, especially in relation to hygiene.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Davis Growth Model (a dynamic steer growth model encompassing 4 fat deposition models) is currently being used by the phenotypic prediction program of the Cooperative Research Centre (CRC) for Beef Genetic Technologies to predict P8 fat (mm) in beef cattle to assist beef producers meet market specifications. The concepts of cellular hyperplasia and hypertrophy are integral components of the Davis Growth Model. The net synthesis of total body fat (kg) is calculated from the net energy available after accounting tor energy needs for maintenance and protein synthesis. Total body fat (kg) is then partitioned into 4 fat depots (intermuscular, intramuscular, subcutaneous, and visceral). This paper reports on the parameter estimation and sensitivity analysis of the DNA (deoxyribonucleic acid) logistic growth equations and the fat deposition first-order differential equations in the Davis Growth Model using acslXtreme (Hunstville, AL, USA, Xcellon). The DNA and fat deposition parameter coefficients were found to be important determinants of model function; the DNA parameter coefficients with days on feed >100 days and the fat deposition parameter coefficients for all days on feed. The generalized NL2SOL optimization algorithm had the fastest processing time and the minimum number of objective function evaluations when estimating the 4 fat deposition parameter coefficients with 2 observed values (initial and final fat). The subcutaneous fat parameter coefficient did indicate a metabolic difference for frame sizes. The results look promising and the prototype Davis Growth Model has the potential to assist the beef industry meet market specifications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Myelodysplasia is a general term referring to abnormal development of the spinal cord. Unless associated with vertebral malformations, it can be difficult to distinguish clinically from other causes of spinal cord disease. These case reports describe the clinical and pathological findings in two calves with a distinctive non-progressive pelvic limb ataxia. The syndrome was observed in two calves on a large, extensively managed beef cattle property near Richmond, north Queensland. Both calves had similar clinical signs, including hindlimb ataxia with swaying of the pelvis and a well-coordinated bilateral hopping-like action. The differential diagnoses are discussed. A focal or diffuse myelodysplasia should be suspected in calves that have exhibited a non-progressive hindlimb ataxia from birth.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Age at puberty is an important component of reproductive performance in beef cattle production systems. Brahman cattle are typically late-pubertal relative to Bos taurus cattle and so it is of economic relevance to select for early age at puberty. To assist selection and elucidate the genes underlying puberty, we performed a genome-wide association study (GWAS) using the BovineSNP50 chip (similar to 54 000 polymorphisms) in Brahman bulls (n = 1105) and heifers (n = 843) and where the heifers were previously analysed in a different study. In a new attempt to generate unbiased estimates of single-nucleotide polymorphism (SNP) effects and proportion of variance explained by each SNP, the available data were halved on the basis of year and month of birth into a calibration and validation set. The traits that defined age at puberty were, in heifers, the age at which the first corpus luteum was detected (AGECL, h(2) = 0.56 +/- 0.11) and in bulls, the age at a scrotal circumference of 26 cm (AGE26, h(2) = 0.78 +/- 0.10). At puberty, heifers were on average older (751 +/- 142 days) than bulls (555 +/- 101 days), but AGECL and AGE26 were genetically correlated (r = 0.20 +/- 0.10). There were 134 SNPs associated with AGECL and 146 SNPs associated with AGE26 (P < 0.0001). From these SNPs, 32 (similar to 22%) were associated (P < 0.0001) with both traits. These top 32 SNPs were all located on Chromosome BTA 14, between 21.95 Mb and 28.4 Mb. These results suggest that the genes located in that region of BTA 14 play a role in pubertal development in Brahman cattle. There are many annotated genes underlying this region of BTA 14 and these are the subject of current research. Further, we identified a region on Chromosome X where markers were associated (P < 1.00E-8) with AGE26, but not with AGECL. Information about specific genes and markers add value to our understanding of puberty and potentially contribute to genomic selection. Therefore, identifying these genes contributing to genetic variation in AGECL and AGE26 can assist with the selection for early onset of puberty.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hip height, body condition, subcutaneous fat, eye muscle area, percentage Bos taurus, fetal age and diet digestibility data were collected at 17 372 assessments on 2181 Brahman and tropical composite (average 28% Brahman) female cattle aged between 0.5 and 7.5 years of age at five sites across Queensland. The study validated the subtraction of previously published estimates of gravid uterine weight to correct liveweight to the non-pregnant status. Hip height and liveweight were linearly related (Brahman: P<0.001, R-2 = 58%; tropical composite P<0.001, R-2 = 67%). Liveweight varied by 12-14% per body condition score (5-point scale) as cows differed from moderate condition (P<0.01). Parallel effects were also found due to subcutaneous rump fat depth and eye muscle area, which were highly correlated with each other and body condition score (r = 0.7-0.8). Liveweight differed from average by 1.65-1.66% per mm of rump fat depth and 0.71-0.76% per cm(2) of eye muscle area (P<0.01). Estimated dry matter digestibility of pasture consumed had no consistent effect in predicting liveweight and was therefore excluded from final models. A method developed to estimate full liveweight of post-weaning age female beef cattle from the other measures taken predicted liveweight to within 10 and 23% of that recorded for 65 and 95% of cases, respectively. For a 95% chance of predicted group average liveweight (body condition score used) being within 5, 4, 3, 2 and 1% of actual group average liveweight required 23, 36, 62, 137 and 521 females, respectively, if precision and accuracy of measurements matches that used in the research. Non-pregnant Bos taurus female cattle were calculated to be 10-40% heavier than Brahmans at the same hip height and body condition, indicating a substantial conformational difference. The liveweight prediction method was applied to a validation population of 83 unrelated groups of cattle weighed in extensive commercial situations on 119 days over 18 months (20 917 assessments). Liveweight prediction in the validation population exceeded average recorded liveweight for weigh groups by an average of 19 kg (similar to 6%) demonstrating the difficulty of achieving accurate and precise animal measurements under extensive commercial grazing conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective To compare reproduction in extensively managed, tropically adapted beef cows that were either seropositive or seronegative to Neospora caninum. Design Longitudinal study of cows within management groups. Methods Compare pregnancy with weaning outcomes for 502 seropositive and 3255 seronegative cows in 25 management groups. Results We found N. caninum in all herds, with an average of 20% of 2640 tested animals seropositive within management group; prevalence varied between 0% and 94%. At 7 of 10 sites assessed, there was evidence of horizontal transmission of N. caninum. There was no overall difference in pregnancy rate (79% vs 75%; P > 0.05), reproductive wastage after confirmed pregnancy diagnosis (11% vs 10%; P > 0.05) or weaning rate (67% vs 68%; P > 0.05) between seronegative and seropositive cows, respectively. In one herd where a combination of risk factors for N. caninum was present, a significant reduction in pregnancy rate occurred after the 6 months mating (85% vs 69%; P < 0.05). The fetal and calf losses observed were lowest in south-east Queensland (4.3% of 117 pregnancies), highest in north-west Queensland (15.5% of 413 pregnancies) and intermediate in north-east Queensland (10.2% of 1625 pregnancies). Other infectious agents that are known to cause reproductive wastage were endemic in many herds, though none appeared to cause significant fetal or calf loss in this study. Conclusion Despite a high prevalence of N. caninum, there was no apparent effect on beef cattle reproduction, but there is potential to cause reproductive wastage if known risk factors to neosporosis are in effect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Beef cattle grazing is the dominant land use in the extensive tropical and sub-tropical rangelands of northern Australia. Despite the considerable knowledge on land and herd management gained from both research and practical experience, the adoption of improved management is limited by an inability to predict how changes in practices and combinations of practices will affect cattle production, economic returns and resource condition. To address these issues, past Australian and international research relating to four management factors that affect productivity and resource condition was reviewed in order to identify key management principles. The four management factors considered were stocking rates, pasture resting, prescribed fire, and fencing and water point development for managing grazing distribution. Four management principles for sound grazing management in northern Australia were formulated as follows: (1) manage stocking rates to meet goals for livestock production and land condition; (2) rest pastures to maintain them in good condition or to restore them from poor condition to increase pasture productivity; (3) devise and apply fire regimes that enhance the condition of grazing land and livestock productivity while minimising undesirable impacts; and (4) use fencing and water points to manipulate grazing distribution. Each principle is supported by several more specific guidelines. These principles and guidelines, and the supporting research on which they are based, are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reproduction records from 2137 cows first mated at 2 years of age and recorded through to 8.5 years of age were used to study the genetics of early and lifetime reproductive performance from two genotypes (1020 Brahman and 1117 Tropical Composite) in tropical Australian production systems. Regular ultrasound scanning of the reproductive tract, coupled with full recording of mating, calving and weaning histories, allowed a comprehensive evaluation of a range of reproductive traits. Results showed components traits of early reproductive performance had moderate to high heritabilities, especially in Brahmans. The heritability of lactation anoestrous interval in 3-year-old cows was 0.51 +/- 0.18 and 0.26 +/- 0.11 for Brahman and Tropical Composite, respectively. Heritabilities of binary reproductive output traits (conception rate, pregnancy rate, calving rate and weaning rate) from first and second matings were generally moderate to high on the underlying scale. Estimates ranged from 0.15 to 0.69 in Brahman and 0.15 to 0.34 in Tropical Composite, but were considerably lower when expressed on the observed scale, particularly for those traits with high mean levels. Heritabilities of lifetime reproduction traits were low, with estimates of 0.11 +/- 0.06 and 0.07 +/- 0.06 for lifetime annual weaning rate in Brahman and Tropical Composite, respectively. Significant differences in mean reproductive performance were observed between the two genotypes, especially for traits associated with anoestrus in first-lactation cows. Genetic correlations between early-in-life reproductive measures and lifetime reproduction traits were moderate to high. Genetic correlations between lactation anoestrous interval and lifetime annual weaning rate were -0.62 +/- 0.24 in Brahman and -0.87 +/- 0.32 in Tropical Composite. The results emphasise the substantial opportunity that exists to genetically improve weaning rates in tropical beef cattle breeds by focusing recording and selection on early-in-life female reproduction traits, particularly in Brahman for traits associated with lactation anoestrus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genetic correlations of young bull and heifer puberty traits with measures of early and lifetime female reproductive performance were estimated in two tropical beef cattle genotypes. Heifer age at puberty was highly (r(g) = -0.71 +/- 0.11) and moderately (r(g) = -0.40 +/- 0.20) genetically correlated with pregnancy rate at first annual mating (mating 1) and lifetime annual calving rate, respectively in Brahman (BRAH). In Tropical Composite (TCOMP), heifer age at puberty was highly correlated with reproductive outcomes from the first re-breed (mating 2), mainly due to its association with lactation anoestrous interval (r(g) = 0.72 +/- 0.17). Scrotal circumference were correlated with heifer age at puberty (r(g) = -0.41 +/- 0.11 at 12 months in BRAH; -0.30 +/- 0.13 at 6 months in TCOMP) but correlations were lower with later female reproduction traits. Bull insulin-like growth factor-I was correlated with heifer age at puberty (r(g) = -0.56 +/- 0.11 in BRAH; -0.43 +/- 0.11 in TCOMP) and blood luteinising hormone concentration was moderately correlated with lactation anoestrous interval (r(g) = 0.59 +/- 0.23) in TCOMP. Semen quality traits, including mass activity, motility and percent normal sperm were genetically correlated with lactation anoestrus and female lifetime female reproductive traits in both genotypes, but the magnitudes of the relationships differed with bull age at measurement. Preputial eversion and sheath scores were genetically associated with lifetime calving and weaning rates in both genotypes. Several of the early-in-life male and female measures examined were moderately to highly genetically correlated with early and lifetime female reproduction traits and may be useful as indirect selection criteria for improving female reproduction in tropical breeds in northern Australia.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reproductive efficiency is an important determinant of profitable cattle breeding systems and the success of assisted reproductive techniques (ART) in wildlife conservation programs. Methods of estrous detection used in intensive beef and dairy cattle systems lack accuracy and remain the single biggest issue for improvement of reproductive rates and such methods are not practical for either large-scale extensive beef cattle enterprises or free-living mammalian species. Recent developments in UHF (ultra high frequency) proximity logger telemetry devices have been used to provide a continuous pair-wise measure of associations between individual animals for both livestock and wildlife. The objective of this study was to explore the potential of using UHF telemetry to identify the reproductive cycle phenotype in terms of intensity and duration of estrus. The study was conducted using Belmont Red (interbred Africander Brahman Hereford–Shorthorn) cattle grazing irrigated pasture on Belmont Research Station, northeastern Australia. The cow-bull associations from three groups of cows each with one bull were recorded over a 7-week breeding season and the stage of estrus was identified using ultrasonography. Telemetry data from bull and cows, collected over 4 8-day logger deployments, were log transformed and analyzed by ANOVA. Both the number and duration of bull-cow affiliations were significantly (P < 0.001) greater in estrous cows compared to anestrus cows. These results support the development of the UHF technology as a hands-off and noninvasive means of gathering socio-sexual information on both wildlife and livestock for reproductive management.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The financial health of beef cattle enterprises in northern Australia has declined markedly over the last decade due to an escalation in production and marketing costs and a real decline in beef prices. Historically, gains in animal productivity have offset the effect of declining terms of trade on farm incomes. This raises the question of whether future productivity improvements can remain a key path for lifting enterprise profitability sufficient to ensure that the industry remains economically viable over the longer term. The key objective of this study was to assess the production and financial implications for north Australian beef enterprises of a range of technology interventions (development scenarios), including genetic gain in cattle, nutrient supplementation, and alteration of the feed base through introduced pastures and forage crops, across a variety of natural environments. To achieve this objective a beef systems model was developed that is capable of simulating livestock production at the enterprise level, including reproduction, growth and mortality, based on energy and protein supply from natural C4 pastures that are subject to high inter-annual climate variability. Comparisons between simulation outputs and enterprise performance data in three case study regions suggested that the simulation model (the Northern Australia Beef Systems Analyser) can adequately represent the performance beef cattle enterprises in northern Australia. Testing of a range of development scenarios suggested that the application of individual technologies can substantially lift productivity and profitability, especially where the entire feedbase was altered through legume augmentation. The simultaneous implementation of multiple technologies that provide benefits to different aspects of animal productivity resulted in the greatest increases in cattle productivity and enterprise profitability, with projected weaning rates increasing by 25%, liveweight gain by 40% and net profit by 150% above current baseline levels, although gains of this magnitude might not necessarily be realised in practice. While there were slight increases in total methane output from these development scenarios, the methane emissions per kg of beef produced were reduced by 20% in scenarios with higher productivity gain. Combinations of technologies or innovative practices applied in a systematic and integrated fashion thus offer scope for providing the productivity and profitability gains necessary to maintain viable beef enterprises in northern Australia into the future.