33 resultados para Bactrocera jarvisi


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spot or strip application of poisoned protein bait is a lure-and-kill technique used for the management of fruit flies. Knowledge of where flies occur in the crop environment is an important part of maximizing the efficacy of this tool. Bactrocera tryoni is a polyphagous pest of horticulture for which very little is known about its distribution within crops. With particular reference to edge effects, we monitored the abundance of B. tryoni in two crops of different architecture; strawberry and apple. In strawberries, we found more flies on the crop edge early in the fruiting season, which lessened gradually and eventually disappeared as the season progressed. In apple orchards, no such edge effect was observed and flies were found equally throughout the orchard. We postulated these differences may be due to differences in crop height (high vs. short) and/or crop canopy architecture (opened and branched in apple, dense and closed in strawberry). In a field cage trial, we tested these predictions using artificial plants of different height and canopy condition. Height and canopy structure type had no significant effects on fly oviposition and protein feeding, but the 'apple' type canopy significantly influenced resting. We thus postulate that there was an edge effect in strawberry because the crop was not providing resting sites and flies were doing so in vegetation around the field margins. The finding that B. tryoni shows different resting site preferences based on plant architecture offers the potential for strategic manipulation of the fly through specific border or inter-row plantings. © 2013 Blackwell Verlag GmbH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bactrocera frauenfeldi (Schiner), the ‘mango fruit fly’, is a horticultural pest originating from the Papua New Guinea region. It was first detected in Australia on Cape York Peninsula in north Queensland in 1974 and had spread to Cairns by 1994 and Townsville by 1997. Bactrocera frauenfeldi has not been recorded further south since then despite its invasive potential, an absence of any controls and an abundance of hosts in southern areas. Analysis of cue-lure trapping data from 1997 to 2012 in relation to environmental variables shows that the distribution of B. frauenfeldi in Queensland correlates to locations with a minimum temperature for the coldest month >13.2°C, annual temperature range <19.3°C, mean temperature of the driest quarter >20.2°C, precipitation of the wettest month >268 mm, precipitation of the wettest quarter >697 mm, temperature seasonality <30.9°C (i.e. lower temperature variability) and areas with higher human population per square kilometre. Annual temperature range was the most important variable in predicting this species' distribution. Predictive distribution maps based on an uncorrelated subset of these variables reasonably reflected the current distribution of this species in northern Australia and predicted other areas in the world potentially at risk from invasion by this species. This analysis shows that the distribution of B. frauenfeldi in Australia is correlated to certain environmental variables that have most likely limited this species' spread southward in Queensland. This is of importance to Australian horticulture in demonstrating that B. frauenfeldi is unlikely to establish in horticultural production areas further south than Townsville.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Queensland fruit fly (Bactrocera tryoni) is a significant quarantine pest of stonefruit. To access domestic markets within Australia stonefruit require treatment to ensure they are free of fruit flies. Due to the recent restriction of the organophosphate pesticides, fenthion and dimethoate, the stonefruit industry now faces a significant challenge to control fruit flies. In this field trial we quantified the level of control achieved by a 'best case' systems approach that relied on currently available and registered control measures. This system included protein bait sprays, Male Annihilation Technique, insecticide cover sprays of trichlorfon, maldison and spinetoram and inspection and culling of damaged fruit. We found that in two out of the three trial orchards, packed fruit samples from Gatton (QLD) and Bangalow (NSW) had low levels of fruit fly infestation; 1.47 and 2.97% respectively. However, at the third property located at Alstonville (NSW) a high level of infestation (51.63%) was found in packed nectarines, which was likely attributed to the late implementation of the systems approach. This trial has demonstrated the potential for fruit fly control without relying on fenthion, however further modification of the system is needed to refine and increase efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Management of cucumber fly (Bactrocera cucumis) has relied heavily on cover sprays of broad spectrum insecticides such as dimethoate and fenthion. Long term access to these insecticides is uncertain, and their use can disrupt integrated pest management programs for other pests such as whitefly, aphids and mites. Application of a protein bait spray for fruit fly control is common practice in tree crops. However, vegetable crops present different challenges as fruit flies are thought to enter these crops only to oviposit, spending the majority of their time in roosting sites outside of the cropping area. Perimeter baiting of non-crop vegetation was developed overseas as a technique for control of melon fly (B. cucurbitae) in cucurbits in Hawaii. More recent work has refined the technique further, with certain types of perimeter vegetation proving more attractive to melon fly than the sorghum or corn crops which are commonly utilised. Trials were performed to investigate the potential of developing a similar system for cucumber fly. Commercially available fruit fly baits were compared for attractiveness to cucumber fly. Eight plant species were evaluated for their relative attractiveness to cucumber flies as roosting sites. Differences were observed in the number of flies feeding at protein bait applied to each of the plants. Results are discussed in the context of the development of a perimeter baiting system for cucumber fly in cucurbit crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frugivorous ‘true’ fruit fly, Bactrocera tryoni (Queensland fruit fly), is presumed to have a non-resourced-based lek mating system. This is largely untested, and contrary data exists to suggest Bactrocera tryoni may have a resource-based mating system focused on fruiting host plants. We tested the mating system of Bactrocera tryoni, and its close sibling Bactrocera neohumeralis, in large field cages using laboratory reared flies. We used observational experiments that allowed us to determine if: (i) mating pairs were aggregated or non-aggregated; (ii) mating system was resource or non-resource based; (iii) flies utilised possible landmarks (tall trees over short) as mate-rendezvous sites; and (iv) males called females from male-dominated leks. We recorded nearly 250 Bactrocera tryoni mating pairs across all experiments, revealing that: (i) mating pairs were aggregated; (ii) mating nearly always occurred in tall trees over short; (iii) mating was non-resource based; and (iv) that males and females arrived at the mate-rendezvous site together with no evidence that males preceded females. Bactrocera neohumeralis copulations were much more infrequent (only 30 mating pairs in total), but for those pairs there was a similar preference for tall trees and no evidence of a resource-based mating system. Some aspects of Bactrocera tryoni mating behaviour align with theoretical expectations of a lekking system, but others do not. Until evidence for unequivocal female choice can be provided (as predicted under a true lek), the mating system of Bactrocera tryoni is best described as a non-resource based, aggregation system for which we also have evidence that land-marking may be involved. This article is protected by copyright. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frugivorous “true” fruit fly, Bactrocera tryoni (Queensland fruit fly), is presumed to have a nonresourced-based lek mating system. This is largely untested, and contrary data exists to suggest Bactrocera tryoni may have a resource-based mating system focused on fruiting host plants. We tested the mating system of Bactrocera tryoni, and its close sibling Bactrocera neohumeralis, in large field cages using laboratory reared flies. We used observational experiments that allowed us to determine if: (i) mating pairs were aggregated or nonaggregated; (ii) mating system was resource or nonresource based; (iii) flies utilized possible landmarks (tall trees over short) as mate-rendezvous sites; and (iv) males called females from male-dominated leks. We recorded nearly 250 Bactrocera tryoni mating pairs across all experiments, revealing that: (i) mating pairs were aggregated; (ii) mating nearly always occurred in tall trees over short; (iii) mating was nonresource based; and (iv) that males and females arrived at the mate-rendezvous site together with no evidence that males preceded females. Bactrocera neohumeralis copulations were much more infrequent (only 30 mating pairs in total), but for those pairs there was a similar preference for tall trees and no evidence of a resource-based mating system. Some aspects of Bactrocera tryoni mating behavior align with theoretical expectations of a lekking system, but others do not. Until evidence for unequivocal female choice can be provided (as predicted under a true lek), the mating system of Bactrocera tryoni is best described as a nonresource based, aggregation system for which we also have evidence that land-marking may be involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) is a major horticultural insect pest in Australia which significantly limits domestic and international market access for Australian horticultural produce. Citrus is one of the industries seriously affected by the fruit fly problem in Australia. This research investigated the effect of citrus peel essential oil chemicals on B. tryoni larval survival in five different commercially important Citrus species and cultivars as a way of better understanding fruit susceptibility. The fruits used were Murcott Mandarin, Navel orange, Eureka lemon, Valencia orange and yellow grapefruit. The essential oils of each citrus type were extracted using hydrodistillation and then mixed, at different concentrations, with artificial larval diets to which B. tryoni eggs were added. Surviving larvae were counted after five trial days. The same process was repeated for six essential oil components. Regression analysis of increasing oil concentration against larval survival showed that the crude oil blends of Navel orange, Eureka lemon and yellow grapefruit had significant negative effects on B. tryoni larval survival, but no such effects were seen for Murcott Mandarin and Valencia orange. Of the individual essential oil fractions, only D-limonene had a significant effect on B. tryoni larval survival, with this chemical being highly toxic at very low concentrations. The results of this study open up opportunities for incorporating B. tryoni resistance mechanisms into citrus through minor peel property changes which would not impact on the eating attributes of the fruit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perimeter-baiting of non-crop vegetation using toxic protein baits was developed overseas as a technique for control of melon fly, Zeugodacus (Zeugodacus) cucurbitae (Coquillett) (formerly Bactrocera (Zeugodacus) cucurbitae), and evidence suggests that this technique may also be effective in Australia for control of local fruit fly species in vegetable crops. Using field cage trials and laboratory reared flies, primary data were generated to support this approach by testing fruit flies' feeding response to protein when applied to eight plant species (forage sorghum, grain sorghum, sweet corn, sugarcane, eggplant, cassava, lilly pilly and orange jessamine) and applied at three heights (1, 1.5 and 2 m). When compared across the plants, Queensland fruit fly, Bactrocera tryoni (Froggatt), most commonly fed on protein bait applied to sugarcane and cassava, whereas more cucumber fly, Zeugodacus (Austrodacus) cucumis (French) (formerly Bactrocera (Austrodacus) cucumis), fed on bait applied to sweet corn and forage sorghum. When protein bait was applied at different heights, B. tryoni responded most to bait placed in the upper part of the plants (2 m), whereas Z. cucumis preferred bait placed lower on the plants (1 and 1.5 m). These results have implications for optimal placement of protein bait for best practice control of fruit flies in vegetable crops and suggest that the two species exhibit different foraging behaviours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bactrocera tryoni (Froggatt) is Australia's major horticultural insect pest, yet monitoring females remains logistically difficult. We trialled the ‘Ladd trap’ as a potential female surveillance or monitoring tool. This trap design is used to trap and monitor fruit flies in countries other (e.g. USA) than Australia. The Ladd trap consists of a flat yellow panel (a traditional ‘sticky trap’), with a three dimensional red sphere (= a fruit mimic) attached in the middle. We confirmed, in field-cage trials, that the combination of yellow panel and red sphere was more attractive to B. tryoni than the two components in isolation. In a second set of field-cage trials, we showed that it was the red-yellow contrast, rather than the three dimensional effect, which was responsible for the trap's effectiveness, with B. tryoni equally attracted to a Ladd trap as to a two-dimensional yellow panel with a circular red centre. The sex ratio of catches was approximately even in the field-cage trials. In field trials, we tested the traditional red-sphere Ladd trap against traps for which the sphere was painted blue, black or yellow. The colour of sphere did not significantly influence trap efficiency in these trials, despite the fact the yellow-panel/yellow-sphere presented no colour contrast to the flies. In 6 weeks of field trials, over 1500 flies were caught, almost exactly two-thirds of them being females. Overall, flies were more likely to be caught on the yellow panel than the sphere; but, for the commercial Ladd trap, proportionally more females were caught on the red sphere versus the yellow panel than would be predicted based on relative surface area of each component, a result also seen the field-cage trial. We determined that no modification of the trap was more effective than the commercially available Ladd trap and so consider that product suitable for more extensive field testing as a B. tryoni research and monitoring tool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An apparatus is described that facilitates the determination of incorporation levels of isotope labelled, gaseous precursors into volatile insect-derived metabolites. Atmospheres of varying gas compositions can be generated by evacuation of a working chamber followed by admission of the required levels of component gases, using a precision, digitised pressure read-out system. Insects such as fruit-flies are located initially in a small introduction chamber, from which migration can occur downwards into the working chamber. The level of incorporation of labelled precursors is continuously assayed by the Solid Phase Micro Extraction (SPME) technique and GC-MS analyses. Experiments with both Bactrocera species (fruit-flies) and a parasitoid wasp, Megarhyssa nortoni nortoni (Cresson) and oxygen-18 labelled dioxygen illustrate the utility of this system. The isotope effects of oxygen-18 on the carbon-13 NMR spectra of 1,7- dioxaspiro[5,5]undecane are also described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data from the eradication of the incursion of Bactrocera papayae Drew and Hancock (Dipt.: Tephritidae) in Australia (1995-1998) are used to assess the significance of various aspects of invasion theory, including the influence of towns on establishment, influence of propagule pressure on the pattern of establishment, and the existence of source-sink dynamics. Because there were no sentinel traps in place, considerable spread had occurred before the eradication campaign started. The distribution of fly density around the epicentre in the town of Cairns and a transect along the main traffic routes to the north and south fitted a Cauchy model with a tail having the same slope as a power model with an exponent of -2.4 extending to 160 km. The Cauchy model indicated that 50% of the flies on the transect would have occurred within 3.2 km of the epicentre, 90% within 13.2 km, and 99% within 60 km. The two major satellites at Mareeba (35 km from the epicentre in Cairns) and Mossman (65 km) were not used for the transect data and had respectively 15 and 30 times the density predicted by the model. The proportion of traps that caught flies (a measure of site occupancy) fell with distance from the epicentre. B. papayae was trapped consistently on only three of the 16 rainforest transects that were surveyed and these were relatively close to urban areas where eradication efforts were intense. Despite there being no eradication effort in the rainforest, the trends to extinction were similar to those in adjacent areas. The strategy of initially concentrating eradication efforts on the core and major satellites while maintaining a quarantine barrier at the airport and the boundaries of the infested area appears to be the key to the containment and rapid eradication of the incursion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Queensland fruit fly, Bactrocera tryoni (Froggatt), is the most serious pest of the native tephritid species in Australia and a significant market access impediment for fruit commodities from any area where this species is endemic. An area-wide management (AWM) program was implemented in the Central Burnett district of Queensland with the aim of improving fruit fly control and enhancing market access opportunities for citrus and other fruits produced in the district. The primary control measures adopted in the AWM system included bait spraying of commercial and non-commercial hosts and the year-round installation of male annihilation technology (MAT) carriers in both orchards and town areas. The MAT carrier used consisted of a dental wick impregnated with 1 ml cue-lure [4-(4-acetoxyphenol)-2-butanone] and 1 ml Malathion 500 EC in a plastic cup. The application of these control measures from 2003 to 2007 resulted in overall suppression of fruit fly populations across the entire district. Male trap catches at the peak activity time were reduced by 95% and overall fruit fly infestation in untreated backyard fruit of town areas reduced from 60.8% to 21.8%. Our results demonstrate remarkable improvement in fruit fly control and economic benefit to the Central Burnett horticulture. Therefore, commercial growers are continuing the AWM program as a long-term, industry funded activity, to provide an additional layer of phytosanitary security for market access of fruit commodities from this district.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work evaluated the following aspects of the use of exclusion netting in low chill stone fruit: the efficacy of protection from fruit fly for this highly susceptible crop; the effects on environmental factors; and the effects on crop development. Concurrently, an economic viability study on the use of exclusion netting was undertaken. The trial site was a 0.6-ha block of low chill stone fruit at Nambour, south-east Queensland, Australia. In this area, populations of Queensland fruit fly (Bactrocera tryoni) are known to be substantial, particularly in spring and summer. The trial block contained healthy 4-year-old trees as follows: 96 peach trees (Prunus persica cv. Flordaprince) and 80 nectarine trees (40 P. persica var. nucipersica cv. White Satin and 40 P. persica var. nucipersica cv. Sunwright). Exclusion netting was installed over approximately half of the block in february 2001. The net was a UV-stabilized structural knitted fabric made from high-density polyethylene yarn with a 10-year prorated UV degradation warranty. The results demonstrated the efficacy of exclusion netting in the control of fruit flies. Exclusion netting increased maximum temperatures by 4.4 deg C and decreased minimum temperatures by 0.5 deg C. Although exclusion netting reduced irradiance by approximately 20%, it enhanced fruit development by 7-10 days and improved fruit quality by increasing sugar concentration by 20-30% and colour intensity by 20%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Citrus crops are considered to be relatively poor hosts for Queensland fruit fly, Bactrocera tryoni (Froggatt), as for other tephritid species. Australian citrus growers and crop consultants have reported observable differences in susceptibility of different citrus cultivars under commercial growing conditions. In this study we conducted laboratory tests and field surveys to determine susceptibility to B. tryoni of six citrus cultivars [(Eureka lemon (Citrus limon (L.) Osbeck); Navel and Valencia oranges (C. sinensis (L.) Osbeck); and Imperial, Ellendale, and Murcott mandarins (C. reticulata Blanco)]. The host susceptibility of these citrus cultivars was quantified by a Host Susceptibility Index, which is defined as the number of adult flies produced per gram of fruit infested at a calculated rate of one egg per gram of fruit. The HSI was ranked as Murcott (0.083) > Imperial (0.052) ≥ Navel (0.026) ≥ Ellendale (0.020) > Valencia (0.008) ≥ Eureka (yellow) (0.002) > Eureka (green) (0). Results of the laboratory study were in agreement with the level of field infestation in the four citrus cultivars (Eureka lemon, Imperial, Ellendale, and Murcott mandarins) that were surveyed from commercial orchards under baiting treatments against fruit flies in the Central Burnett district of Queensland. Field surveys of citrus hosts from the habitats not subject to fruit fly management showed that the numbers of fruit flies produced per gram of fruit were much lower, compared with the more susceptible noncitrus hosts, such as guava (Psidium guajava L.), cherry guava (P. littorale Raddi), mulberry (Morus nigra L.), loquat (Eriobotrya japonica (Thunb.) Lindl.), and pear (Pyrus communis L.). Therefore, the major citrus crops commercially cultivated in Australia have a relatively low susceptibility to B. tryoni, with Eureka lemons being a particularly poor host for this tephritid fruit fly.