26 resultados para Ambiguity success rate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wildlife harvesting has a long history in Australia, including obvious examples of overexploitation. Not surprisingly, there is scepticism that commercial harvesting can be undertaken sustainably. Kangaroo harvesting has been challenged regularly at Administrative Appeals Tribunals and elsewhere over the past three decades. Initially, the concern from conservation groups was sustainability of the harvest. This has been addressed through regular, direct monitoring that now spans > 30 years and a conservative harvest regime with a low risk of overharvest in the face of uncertainty. Opposition to the harvest now continues from animal rights groups whose concerns have shifted from overall harvest sustainability to side effects such as animal welfare, and changes to community structure, genetic composition and population age structure. Many of these concerns are speculative and difficult to address, requiring expensive data. One concern is that older females are the more successful breeders and teach their daughters optimal habitat and diet selection. The lack of older animals in a harvested population may reduce the fitness of the remaining individuals; implying population viability would also be compromised. This argument can be countered by the persistence of populations under harvesting without any obvious impairment to reproduction. Nevertheless, an interesting question is how age influences reproductive output. In this study, data collected from a number of red kangaroo populations across eastern Australia indicate that the breeding success of older females is up to 7-20% higher than that of younger females. This effect is smaller than that of body condition and the environment, which can increase breeding success by up to 30% and 60% respectively. Average age of mature females in a population may be reduced from 9 to 6 years old, resulting in a potential reduction in breeding success of 3-4%. This appears to be offset in harvested populations by improved condition of females from a reduction in kangaroo density. There is an important recommendation for management. The best insurance policy against overharvest and unwanted side effects is not research, which could be never-ending. Rather, it is a harvest strategy that includes safeguards against uncertainty such as harvest reserves, conservative quotas and regular monitoring. Research is still important in fine tuning that strategy and is most usefully incorporated as adaptive management where it can address the key questions on how populations respond to harvesting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims: Success of invasive plant species is thought to be linked with their higher leaf carbon fixation strategy, enabling them to capture and utilize resources better than native species, and thus pre-empt and maintain space. However, these traits are not well-defined for invasive woody vines. Methods: In a glass house setting, experiments were conducted to examine how leaf carbon gain strategies differ between non-indigenous invasive and native woody vines of south-eastern Australia, by investigating their biomass gain, leaf structural, nutrient and physiological traits under changing light and moisture regimes. Key Results: Leaf construction cost (CC), calorific value and carbon : nitrogen (C : N) ratio were lower in the invasive group, while ash content, N, maximum photosynthesis, light-use efficiency, photosynthetic energyuse efficiency (PEUE) and specific leaf area (SLA) were higher in this group relative to the native group. Trait plasticity, relative growth rate (RGR), photosynthetic nitrogen-use efficiency and water-use efficiency did not differ significantly between the groups. However, across light resource, regression analyses indicated that at a common (same) leaf CC and PEUE, a higher biomass RGR resulted for the invasive group; also at a common SLA, a lower CC but higher N resulted for the invasive group. Overall, trait co-ordination (using pair-wise correlation analyses) was better in the invasive group. Ordination using 16 leaf traits indicated that the major axis of invasive-native dichotomy is primarily driven by SLA and CC (including its components and/or derivative of PEUE) and was significantly linked with RGR. Conclusions: These results demonstrated that while not all measures of leaf resource traits may differ between the two groups, the higher level of trait correlation and higher revenue returned (RGR) per unit of major resource need (CC) and use (PEUE) in the invasive group is in line with their rapid spread where introduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For many fisheries, there is a need to develop appropriate indicators, methodologies, and rules for sustainably harvesting marine resources. Complexities of scientific and financial factors often prevent addressing these, but new methodologies offer significant improvements on current and historical approaches. The Australian spanner crab fishery is used to demonstrate this. Between 1999 and 2006, an empirical management procedure using linear regression of fishery catch rates was used to set the annual total allowable catch (quota). A 6-year increasing trend in catch rates revealed shortcomings in the methodology, with a 68% increase in quota calculated for the 2007 fishing year. This large quota increase was prevented by management decision rules. A revised empirical management procedure was developed subsequently, and it achieved a better balance between responsiveness and stability. Simulations identified precautionary harvest and catch rate baselines to set quotas that ensured sustainable crab biomass and favourable performance for management and industry. The management procedure was simple to follow, cost-effective, robust to strong trends and changes in catch rates, and adaptable for use in many fisheries. Application of such “tried-and-tested” empirical systems will allow improved management of both data-limited and data-rich fisheries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of grazing management on total soil organic carbon (SOC) and soil total nitrogen (TN) in tropical grasslands is an issue of considerable ecological and economic interest. Here we have used linear mixed models to investigate the effect of grazing management on stocks of SOC and TN in the top 0.5 m of the soil profile. The study site was a long-term pasture utilization experiment, 26 years after the experiment was established for sheep grazing on native Mitchell grass (Astrebla spp.) pasture in northern Australia. The pasture utilization rates were between 0% (exclosure) and 80%, assessed visually. We found that a significant amount of TN had been lost from the top 0.1 m of the soil profile as a result of grazing, with 80% pasture utilization resulting in a loss of 84 kg ha−1 over the 26-year period. There was no significant effect of pasture utilization rate on TN when greater soil depths were considered. There was no significant effect of pasture utilization rate on stocks of SOC and soil particulate organic carbon (POC), or the C:N ratio at any depth; however, visual trends in the data suggested some agreement with the literature, whereby increased grazing pressure appeared to: (i) decrease SOC and POC stocks; and, (ii) increase the C:N ratio. Overall, the statistical power of the study was limited, and future research would benefit from a more comprehensive sampling scheme. Previous studies at the site have found that a pasture utilization rate of 30% is sustainable for grazing production on Mitchell grass; however, given our results, we conclude that N inputs (possibly through management of native N2-fixing pasture legumes) should be made for long-term maintenance of soil health, and pasture productivity, within this ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial environments may receive only a fraction of expected genetic gains for growth rate as predicted from the selection environment. This fraction is result of undesirable genotype-by-environment interactions (GxE) and measured by the genetic correlation (rg) of growth between environments. Rapid estimates of genetic correlation achieved in one generation are notoriously difficult to estimate with precision. A new design is proposed where genetic correlations can be estimated by utilising artificial mating from cryopreserved semen and unfertilised eggs stripped from a single female. We compare a traditional phenotype analysis of growth to a threshold model where only the largest fish are genotyped for sire identification. The threshold model was robust to differences in family mortality differing up to 30%. The design is unique as it negates potential re-ranking of families caused by an interaction between common maternal environmental effects and growing environment. The design is suitable for rapid assessment of GxE over one generation with a true 0.70 genetic correlation yielding standard errors as low as 0.07. Different design scenarios were tested for bias and accuracy with a range of heritability values, number of half-sib families created, number of progeny within each full-sib family, number of fish genotyped, number of fish stocked, differing family survival rates and at various simulated genetic correlation levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Post-rainy sorghum (Sorghum bicolor (L.) Moench) production underpins the livelihood of millions in the semiarid tropics, where the crop is affected by drought. Drought scenarios have been classified and quantified using crop simulation. In this report, variation in traits that hypothetically contribute to drought adaptation (plant growth dynamics, canopy and root water conducting capacity, drought stress responses) were virtually introgressed into the most common post-rainy sorghum genotype, and the influence of these traits on plant growth, development, and grain and stover yield were simulated across different scenarios. Limited transpiration rates under high vapour pressure deficit had the highest positive effect on production, especially combined with enhanced water extraction capacity at the root level. Variability in leaf development (smaller canopy size, later plant vigour or increased leaf appearance rate) also increased grain yield under severe drought, although it caused a stover yield trade-off under milder stress. Although the leaf development response to soil drying varied, this trait had only a modest benefit on crop production across all stress scenarios. Closer dissection of the model outputs showed that under water limitation, grain yield was largely determined by the amount of water availability after anthesis, and this relationship became closer with stress severity. All traits investigated increased water availability after anthesis and caused a delay in leaf senescence and led to a ‘stay-green’ phenotype. In conclusion, we showed that breeding success remained highly probabilistic; maximum resilience and economic benefits depended on drought frequency. Maximum potential could be explored by specific combinations of traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyperus iria is a weed of rice with widespread occurrence throughout the world. Because of concerns about excessive and injudicious use of herbicides, cultural weed management approaches that are safe and economical are needed. Developing such approaches will require a better understanding of weed biology and ecology, as well as of weed response to increases in crop density and nutrition. Knowledge of the effects of nitrogen (N) fertilizer on crop-weed competitive interactions could also help in the development of integrated weed management strategies. The present study was conducted in a screenhouse to determine the effects of rice planting density (0, 5, 10, and 20 plants pot−1) and N rate (0, 50, 100, and 150 kg ha−1) on the growth of C. iria. Tiller number per plant decreased by 73–88%, leaf number by 85–94%, leaf area by 85–98%, leaf biomass by 92–99%, and inflorescence biomass by 96–99% when weed plants were grown at 20 rice plants pot−1 (i.e., 400 plants m−2) compared with weed plants grown alone. All of these parameters increased when N rates were increased. On average, weed biomass increased by 118–389% and rice biomass by 121–275% with application of 50–150 kg N ha−1, compared to control. Addition of N favored weed biomass production relative to rice biomass. Increased N rates reduced the root-to-shoot weight ratio of C. iria. Rice interference reduced weed growth and biomass and completely suppressed C. iria when no N was applied at high planting densities (i.e., 20 plants pot−1). The weed showed phenotypic plasticity in response to N application, and the addition of N increased the competitive ability of the weed over rice at densities of 5 and 10 rice plants pot−1 compared with 20 plants pot−1. The results of the present study suggest that high rice density (i.e., 400 plants m−2) can help suppress C. iria growth even at high N rates (150 kg ha−1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An estimated 110 Mt of dust is eroded by wind from the Australian land surface each year, most of which originates from the arid and semi-arid rangelands. Livestock production is thought to increase the susceptibility of the rangelands to wind erosion by reducing vegetation cover and modifying surface soil stability. However, research is yet to quantify the impacts of grazing land management on the erodibility of the Australian rangelands, or determine how these impacts vary among land types and over time. We present a simulation analysis that links a pasture growth and animal production model (GRASP) to the Australian Land Erodibility Model (AUSLEM) to evaluate the impacts of stocking rate, stocking strategy and land condition on the erodibility of four land types in western Queensland, Australia. Our results show that declining land condition, over stocking, and using inflexible stocking strategies have potential to increase land erodibility and amplify accelerated soil erosion. However, land erodibility responses to grazing are complex and influenced by land type sensitivities to different grazing strategies and local climate characteristics. Our simulations show that land types which are more resilient to livestock grazing tend to be least susceptible to accelerated wind erosion. Increases in land erodibility are found to occur most often during climatic transitions when vegetation cover is most sensitive to grazing pressure. However, grazing effects are limited during extreme wet and dry periods when the influence of climate on vegetation cover is strongest. Our research provides the opportunity to estimate the effects of different land management practices across a range of land types, and provides a better understanding of the mechanisms of accelerated erosion resulting from pastoral activities. The approach could help further assessment of land erodibility at a broader scale notably if combined with wind erosion models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of root dry matter (DM) allocation, in relation to differing vigour conferred by rootstock cultivars, is required to understand the structural relationships between rootstock and scion. We investigated the mass of roots (four size classes up to 23 mm diameter) by coring proximal to five polyembryonic mango rootstock cultivars known to differ in their effects on the vigour and productivity of scion cultivar ‘Kensington Pride’, in a field trial of 13-year-old trees. Significant differences in fine (<0.64 and 0.64–1.88 mm diameter) and small (1.88–7.50 mm) root DM contents were observed between rootstock cultivars. There was a complex relationship between the amount of feeder (fine and small size classes) roots and scion size (trunk cross sectional area, TCSA), with intermediate size trees on rootstock MYP having the most feeder roots, while the smallest trees, on the rootstock Vellaikulamban had the least of these roots. Across rootstock cultivars, tree vigour (TCSA growth rate) was negatively and significantly related to the ratio of fine root DM/scion TCSA, suggesting this may be a useful indicator of the vigour that different rootstocks confer on the scion. In contrast non-ratio root DM and scion TCSA results had no significant relationships. The significant rootstock effects on orchard root growth and tree size could not be predicted from earlier differences in nursery seedling vigour, nor did seedling vigour predict root DM allocation.