23 resultados para Advanced Land Imager


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An estimated 110 Mt of dust is eroded by wind from the Australian land surface each year, most of which originates from the arid and semi-arid rangelands. Livestock production is thought to increase the susceptibility of the rangelands to wind erosion by reducing vegetation cover and modifying surface soil stability. However, research is yet to quantify the impacts of grazing land management on the erodibility of the Australian rangelands, or determine how these impacts vary among land types and over time. We present a simulation analysis that links a pasture growth and animal production model (GRASP) to the Australian Land Erodibility Model (AUSLEM) to evaluate the impacts of stocking rate, stocking strategy and land condition on the erodibility of four land types in western Queensland, Australia. Our results show that declining land condition, over stocking, and using inflexible stocking strategies have potential to increase land erodibility and amplify accelerated soil erosion. However, land erodibility responses to grazing are complex and influenced by land type sensitivities to different grazing strategies and local climate characteristics. Our simulations show that land types which are more resilient to livestock grazing tend to be least susceptible to accelerated wind erosion. Increases in land erodibility are found to occur most often during climatic transitions when vegetation cover is most sensitive to grazing pressure. However, grazing effects are limited during extreme wet and dry periods when the influence of climate on vegetation cover is strongest. Our research provides the opportunity to estimate the effects of different land management practices across a range of land types, and provides a better understanding of the mechanisms of accelerated erosion resulting from pastoral activities. The approach could help further assessment of land erodibility at a broader scale notably if combined with wind erosion models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weather is a general stochastic influence on the life history of weeds. In contrast, anthropogenic disturbance (e.g. land use) is an important deterministic influence on weed demography. Our aim with this study was to investigate the relative contributions of land use and weather on the demography of Lantana camara (lantana), a weed of agricultural and natural habitats, based on the intensive monitoring of lantana populations under three land uses (viz. farm[pasture], and burnt and grazed forests) in subtropical Australia. Lantana populations were growing vigorously across all land uses (asymptotic population growth rate, λ > 3). Examination of historical demography using retrospective perturbation analyses showed that weather was a strong influence on lantana demography with the transition from an El Niño (2008–09) to a La Niña (2009–10) year having a strong positive effect on population growth rate. This effect was most marked at the grazed site, and to a lesser extent at the burnt site, with seedling-to-juvenile and juvenile-to-adult transitions contributing most to these effects. This is likely the result of burning and grazing having eliminated/reduced interspecific competition at these sites. Prospective perturbation analyses revealed that λ was most sensitive to proportionate changes in growth transitions, followed by fecundity and survival transitions. Examination of context-specific patterns in elasticity revealed that growth and fecundity transitions are likely to be the more critical vital rates to reduce λ in wet years at the burnt and grazed forest sites, compared to the farm/pasture site. Management of lantana may need to limit the transition of juveniles into the adult stages, especially in sites where lantana is free from competition (e.g. in the presence of fire or grazing), and this particularly needs to be achieved in wet years. Collectively, these results shed light on aspects of spatial and temporal variation in the demography of lantana, and offer insights on its context-specific management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrous oxide is the foremost greenhouse gas (GHG)generated by land-applied manures and chemical fertilisers (Australian Government 2013). This research project was part of the National Agricultural Manure Management Program and investigated the potential for sorbers (i.e. specific naturally-occurring minerals) to decrease GHG emissions from spent piggery litter (as well as other manures)applied to soils. The sorbers investigated in this research were vermiculite and bentonite. Both are clays with high cation exchange capacities, of approximately 100–150 cmol/kg Faure 1998). The hypothesis tested in this study was that the sorbers bind ammonium in soil solution thereby suppressing ammonia (NH3)volatilisation and in doing so, slowing the kinetics of nitrate formation and associated nitrous oxide (N2O) emissions. A series of laboratory, glasshouse and field experiments were conducted to assess the sorbers’ effectiveness. The laboratory experiments comprised 64 vessels containing manure and sorber/manure ratios ranging from 1 : 10 to 1 : 1 incorporated into a sandy Sodosol via mixing. The glasshouse trial involved 240 pots comprising manure/sorber incubations placed 5 cm below the soil surface, two soil types (sandy Sodosol and Ferrosol) and two different nitrogen (N) application rates (50 kg N/ha and 150 kg N/ha) with a model plant (kikuyu grass). The field trial consisted of 96, 2 m · 2 m plots on a Ferrosol site with digit grass used as a model plant. Manure/ sorber mixtures were applied in trenches (5 cm below surface) to these plots at increasing sorber levels at anNloading rate of 200 kg/ha. Gas produced in all experiments was plumbed into a purpose-built automated gas analysis (N2O, NH3, CH4, CO2) system. In the laboratory experiments, the sorbers showed strong capacity to decreaseNH3 emissions (up to 80% decrease). Ammonia emissions were close to the detection limit in all treatments in the glasshouse and field trial. In all experiments, considerable N2O decreases (>40%) were achieved by the sorbers. As an example, mean N2O emission decreases from the field trial phase of the project are shown in Fig. 1a. The decrease inGHGemissions brought about by the clays did not negatively impact agronomic performance. Both vermiculite and bentonite resulted in a significant increase in dry matter yields in the field trial (Fig. 1b). Continuing work will optimise the sorber technology for improved environmental and agronomic performance across a range of soils (Vertosol, Dermosol in addition to Ferrosol and Sodosols) and environmental parameters (moisture, temperature, porosity, pH).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertebrate fauna was studied over 10 years following revegetation of a Eucalyptus tereticornis ecosystem on former agricultural land. We compared four vegetation types: remnant forest, plantings of a mix of native tree species on cleared land, natural regeneration of partially cleared land after livestock removal, and cleared pasture land with scattered paddock trees managed for livestock production. Pasture differed significantly from remnant in both bird and nonbird fauna. Although 10 years of ecosystem restoration is relatively short term in the restoration process, in this time bird assemblages in plantings and natural regeneration had diverged significantly from pasture, but still differed significantly from remnant. After 10 years, 70 and 66% of the total vertebrate species found in remnant had been recorded in plantings and natural regeneration, respectively. Although the fauna assemblages within plantings and natural regeneration were tracking toward those of remnant, significant differences in fauna between plantings and natural regeneration indicated community development along different restoration pathways. Because natural regeneration contained more mature trees (dbh > 30 cm), native shrub species, and coarse woody debris than plantings from the beginning of the study, these features possibly encouraged different fauna to the revegetation areas from the outset. The ability of plantings and natural regeneration to transition to the remnant state will be governed by a number of factors that were significant in the analyses, including shrub cover, herbaceous biomass, tree hollows, time since fire, and landscape condition. Both active and passive restoration produced significant change from the cleared state in the short term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reforestation will have important consequences for the global challenges of mitigating climate change, arresting habitat decline and ensuring food security. We examined field-scale trade-offs between carbon sequestration of tree plantings and biodiversity potential and loss of agricultural land. Extensive surveys of reforestation across temperate and tropical Australia (N = 1491 plantings) were used to determine how planting width and species mix affect carbon sequestration during early development (< 15 year). Carbon accumulation per area increased significantly with decreasing planting width and with increasing proportion of eucalypts (the predominant over-storey genus). Highest biodiversity potential was achieved through block plantings (width > 40 m) with about 25% of planted individuals being eucalypts. Carbon and biodiversity goals were balanced in mixed-species plantings by establishing narrow belts (width < 20 m) with a high proportion (>75%) of eucalypts, and in monocultures of mallee eucalypt plantings by using the widest belts (ca. 6–20 m). Impacts on agriculture were minimized by planting narrow belts (ca. 4 m) of mallee eucalypt monocultures, which had the highest carbon sequestering efficiency. A plausible scenario where only 5% of highly-cleared areas (<30% native vegetation cover remaining) of temperate Australia are reforested showed substantial mitigation potential. Total carbon sequestration after 15 years was up to 25 Mt CO2-e year−1 when carbon and biodiversity goals were balanced and 13 Mt CO2-e year−1 if block plantings of highest biodiversity potential were established. Even when reforestation was restricted to marginal agricultural land (<$2000 ha−1 land value, 28% of the land under agriculture in Australia), total mitigation potential after 15 years was 17–26 Mt CO2-e year−1 using narrow belts of mallee plantings. This work provides guidance on land use to governments and planners. We show that the multiple benefits of young tree plantings can be balanced by manipulating planting width and species choice at establishment. In highly-cleared areas, such plantings can sequester substantial biomass carbon while improving biodiversity and causing negligible loss of agricultural land.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The forest tree species Khaya senegalensis (Desr.) A. Juss. occurs in a belt across 20 African countries from Senegal-Guinea to Sudan-Uganda where it is a highly important resource. However, it is listed as Vulnerable (IUCN 2015-3). Since introduction in northern Australia around 1959, the species has been planted widely, yielding high-value products. The total area of plantations of the species in Australia exceeds 15,000 ha, mostly planted in the Northern Territory since 2006, and includes substantial areas across 60-70 woodlots and industrial plantations established in north-eastern Queensland since the early-1990s and during 2005-2007 respectively. Collaborative conservation and tree improvement by governments began in the Northern Territory and Queensland in 2001 based on provenance and other trials of the 1960s-1970s. This work has developed a broad base of germplasm in clonal seed orchards, hedge gardens and trials (clone and progeny). Several of the trials were established collaboratively on private land. Since the mid-2000s, commercial growers have introduced large numbers of provenance-bulk and individual-tree seedlots to establish industrial plantations and trials, several of the latter in collaboration with the Queensland Government. Provenance bulks (>140) and families (>400) from 17 African countries are established in Australia, considered the largest genetic base of the species in a single country outside Africa. Recently the annual rate of industrial planting of the species in Australia has declined, and R&D has been suspended by governments and reduced by the private sector. However, new commercial plantings in the Northern Territory and Queensland are proposed. In domesticating a species, the strategic importance of a broad genetic base is well known. The wide range of first- and advanced-generation germplasm of the species established in northern Australia and documented in this paper provides a sound basis for further domestication and industrial plantation and woodlot expansion, when investment conditions are favourable

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land-applied manures produce nitrous oxide (N2O), a greenhouse gas (GHG). Land application can also result in ammonia (NH3) volatilisation, leading to indirect N2O emissions. Here, we summarise a glasshouse investigation into the potential for vermiculite, a clay with a high cation exchange capacity, to decrease N2O emissions from livestock manures (beef, pig, broiler, layer), as well as urea, applied to soils. Our hypothesis is that clays adsorb ammonium, thereby suppressing NH3 volatilisation and slowing N2O emission processes. We previously demonstrated the ability of clays to decrease emissions at the laboratory scale. In this glasshouse work, manure and urea application rates varied between 50 and 150 kg nitrogen (N)/ha. Clay : manure ratios ranged from 1 : 10 to 1 : 1 (dry weight basis). In the 1-year trial, the above-mentioned N sources were incorporated with vermiculite in 1 L pots containing Sodosol and Ferrosol growing a model pasture (Pennisetum clandestinum or kikuyu grass). Gas emissions were measured periodically by placing the pots in gas-tight bags connected to real-time continuous gas analysers. The vermiculite achieved significant (P ≤ 0.05) and substantial decreases in N2O emissions across all N sources (70% on average). We are currently testing the technology at the field scale; which is showing promising emission decreases (~50%) as well as increases (~20%) in dry matter yields. This technology clearly has merit as an effective GHG mitigation strategy, with potential associated agronomic benefits, although it needs to be verified by a cost–benefit analysis.