23 resultados para 7441-107
Resumo:
The objective of this study was to investigate patterns of soil water extraction and drought resistance among genotypes of bermudagrass (Cynodon spp.) a perennial C-4 grass. Four wild Australian ecotypes (1-1, 25a1, 40-1, and 81-1) and four cultivars (CT2, Grand Prix, Legend, and Wintergreen) were examined in field experiments with rainfall excluded to monitor soil water extraction at 30-190 cm depths. In the study we defined drought resistance as the ability to maintain green canopy cover under drought. The most drought resistant genotypes (40-1 and 25a1) maintained more green cover (55-85% vs 5-10%) during water deficit and extracted more soil water (120-160 mm vs 77-107 mm) than drought sensitive genotypes, especially at depths from 50 to 110 cm, though all genotypes extracted water to 190 cm. The maintenance of green cover and higher soil water extraction were associated with higher stomatal conductance, photosynthetic rate and relative water content. For all genotypes, the pattern of water use as a percentage of total water use was similar across depth and time We propose the observed genetic variation was related to different root characteristics (root length density, hydraulic conductivity, root activity) although shoot sensitivity to drying soil cannot be ruled out.
Resumo:
Genetic and physiological studies often comprise genotypes diverse in vigour, size and flowering time. This can make the phenotyping of complex traits challenging, particularly those associated with canopy development, biomass and yield, as the environment of one genotype can be influenced by a neighbouring genotype. Limited seed and space may encourage field assessment in single, spaced rows or in small, unbordered plots, whereas the convenience of a controlled environment or greenhouse makes pot studies tempting. However, the relevance of such growing conditions to commercial field-grown crops is unclear and often doubtful. Competition for water, light and nutrients necessary for canopy growth will be variable where immediate neighbours are genetically different, particularly under stress conditions, where competition for resources and influence on productivity is greatest. Small hills and rod-rows maximise the potential for intergenotypic competition that is not relevant to a crop’s performance in monocultures. Response to resource availability will typically vary among diverse genotypes to alter genotype ranking and reduce heritability for all growth-related traits, with the possible exception of harvest index. Validation of pot experiments to performance in canopies in the field is essential, whereas the planting of multirow plots and the simple exclusion of plot borders at harvest will increase experimental precision and confidence in genotype performance in target environments.
Resumo:
In 2001, the red imported fire ant (Solenopsis invicta Buren) was identified in Brisbane, Australia. An eradication program involving broadcast bait treatment with two insect growth regulators and a metabolic inhibitor began in September of that year and is currently ongoing. To gauge the impacts of these treatments on local ant populations, we examined long-term monitoring data and quantified abundance patterns of S. invicta and common local ant genera using a linear mixed-effects model. For S. invicta, presence in pitfalls reduced over time to zero on every site. Significantly higher numbers of S. invicta workers were collected on high-density polygyne sites, which took longer to disinfest compared with monogyne and low-density polygyne sites. For local ants, nine genus groups of the 10 most common genera analyzed either increased in abundance or showed no significant trend. Five of these genus groups were significantly less abundant at the start of monitoring on high-density polygyne sites compared with monogyne and low-density polygyne sites. The genus Pheidole significantly reduced in abundance over time, suggesting that it was affected by treatment efforts. These results demonstrate that the treatment regime used at the time successfully removed S. invicta from these sites in Brisbane, and that most local ant genera were not seriously impacted by the treatment. These results have important implications for current and future prophylactic treatment efforts, and suggest that native ants remain in treated areas to provide some biological resistance to S. invicta.
Resumo:
Nitrogen (N) is an essential nutrient in mango, influencing both productivity and fruit quality. In Australian mango orchards, tree N is traditionally assessed once a year at the dormant pre-flowering stage using laboratory analysis of leaf N. This single assessment is insufficient to determine tree N status at all stages of the annual phenological cycle. Development of a field-based rapid N test would allow more frequent monitoring of tree N status and improved fertiliser management. These experiments examined the accuracy and useability of several devices used in other horticultural crops to rapidly assess mango leaf N in the field; the Konica Minolta 'SPAD-502 chlorophyll meter', Horiba 'Cardy Meter' and the Merck 'RQflex 10.' Regression and correlation analyses were used to determine the relationship between total leaf N and the measurements from the rapid test devices. The relationship between the chlorophyll index measured by the SPAD-502 meter and leaf N was highly significant at late fruit set (R 2=0.72, n=40) and post-harvest (R 2=0.81, n=40) stages and significant at the flowering stage (R 2=0.51, n=40) in the cultivar 'Kensington Pride', indicating the device can be used to rapidly assess mango leaf N in the field. Correlation analysis indicated the relationship between petiole sap measured with the Cardy or Merck devices and leaf N was non-significant.
Resumo:
Sustainable management of native pastures requires an understanding of what the bounds of pasture composition, cover and soil surface condition are for healthy pastoral landscapes to persist. A survey of 107 Aristida/Bothriochloa pasture sites in inland central Queensland was conducted. The sites were chosen for their current diversity of tree cover, apparent pasture condition and soil type to assist in setting more objective bounds on condition ‘states’ in such pastures. Assessors’ estimates of pasture condition were strongly correlated with herbage mass (r = 0.57) and projected ground cover (r = 0. 58), and moderately correlated with pasture crown cover (r = 0.35) and tree basal area (r = 0.32). Pasture condition was not correlated with pasture plant density or the frequency of simple guilds of pasture species. The soil type of Aristida/Bothriochloa pasture communities was generally hard-setting, low in cryptogam cover but moderately covered with litter and projected ground cover (30–50%). There was no correlation between projected ground cover of pasture and estimated ground-level cover of plant crowns. Tree basal area was correlated with broad categories of soil type, probably because greater tree clearing has occurred on the more fertile, heavy-textured clay soils. Of the main perennial grasses, some showed strong soil preferences, for example Tripogon loliiformis for hard-setting soils and Dichanthium sericeum for clays. Common species, such as Chrysopogon fallax and Heteropogon contortus, had no strong soil preference. Wiregrasses (Aristida spp.) tended to be uncommon at both ends of the estimated pasture condition scale whereas H. contortus was far more common in pastures in good condition. Sedges (Cyperaceae) were common on all soil types and for all pasture condition ratings. Plants identified as increaser species were Tragus australianus, daisies (Asteraceae) and potentially toxic herbaceous legumes such as Indigofera spp. and Crotalaria spp. Pasture condition could not be reliably predicted based on the abundance of a single species or taxon but there may be scope for using integrated data for four to five ecologically contrasting plants such as Themeda triandra with daisies, T. loliiformis and flannel weeds (Malvaceae).
Resumo:
Background: In 2008-09, evidence of Reston ebolavirus (RESTV) infection was found in domestic pigs and pig workers in the Philippines. With species of bats having been shown to be the cryptic reservoir of filoviruses elsewhere, the Philippine government, in conjunction with the Food and Agriculture Organization of the United Nations, assembled a multi-disciplinary and multi-institutional team to investigate Philippine bats as the possible reservoir of RESTV. Methods: The team undertook surveillance of bat populations at multiple locations during 2010 using both serology and molecular assays. Results: A total of 464 bats from 21 species were sampled. We found both molecular and serologic evidence of RESTV infection in multiple bat species. RNA was detected with quantitative PCR (qPCR) in oropharyngeal swabs taken from Miniopterus schreibersii, with three samples yielding a product on conventional hemi-nested PCR whose sequences differed from a Philippine pig isolate by a single nucleotide. Uncorroborated qPCR detections may indicate RESTV nucleic acid in several additional bat species (M. australis, C. brachyotis and Ch. plicata). We also detected anti-RESTV antibodies in three bats (Acerodon jubatus) using both Western blot and ELISA. Conclusions: The findings suggest that ebolavirus infection is taxonomically widespread in Philippine bats, but the evident low prevalence and low viral load warrants expanded surveillance to elaborate the findings, and more broadly, to determine the taxonomic and geographic occurrence of ebolaviruses in bats in the region. © 2015 Jayme et al.
Resumo:
The minute two-spotted ladybeetle, Diomus notescens Blackburn is a common predator of aphids and other pests in Australian agricultural crops, however little is known about the biology of D. notescens. The aim of this study was to provide information on the life cycle of this predator and improve our understanding of its biological control potential, particularly against one of the major pests of cotton, Aphis gossypii Glover. In laboratory experiments, juvenile development, prey consumption, as well as adult lifespan and fecundity were studied. Results from this study revealed that D. notescens could successfully complete development on A. gossypii, which at 25 °C required 21 days and during this period they each consume 129 ± 5.2 aphids. At 25 °C adult lifespan was 77 ± 9.6 days, with a mean daily prey consumption of 28 ± 1.8 aphids and a mean daily fecundity of 8 ± 0.5 eggs. Net reproductive rate was estimated as 187 ± 25.1 females and the intrinsic rate of increase was estimated as 0.14. Juvenile development was recorded at four constant temperatures (15, 21, 26 and 27 °C) and using a linear model, the lower threshold for D. notescens development was estimated to be 10 ± 0.6 °C with 285 ± 4.7 degree days required to complete development. A prey choice experiment studying predation rates revealed a strong preference for A. gossypii nymphs compared to Bemisia tabaci Gennadius eggs.