257 resultados para grain production


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to hot environments affects milk yield (MY) and milk composition of pasture and feed-pad fed dairy cows in subtropical regions. This study was undertaken during summer to compare MY and physiology of cows exposed to six heat-load management treatments. Seventy-eight Holstein-Friesian cows were blocked by season of calving, parity, milk yield, BW, and milk protein (%) and milk fat (%) measured in 2 weeks prior to the start of the study. Within blocks, cows were randomly allocated to one of the following treatments: open-sided iron roofed day pen adjacent to dairy (CID) + sprinklers (SP); CID only; non-shaded pen adjacent to dairy + SP (NSD + SP); open-sided shade cloth roofed day pen adjacent to dairy (SCD); NSD + sprinkler (sprinkler on for 45 min at 1100 h if mean respiration rate >80 breaths per minute (NSD + WSP)); open-sided shade cloth roofed structure over feed bunk in paddock + 1 km walk to and from the dairy (SCP + WLK). Sprinklers for CID + SP and NSD + SP cycled 2 min on, 12 min off when ambient temperature >26°C. The highest milk yields were in the CID + SP and CID treatments (23.9 L cow−1 day−1), intermediate for NSD + SP, SCD and SCP + WLK (22.4 L cow−1 day−1), and lowest for NSD + WSP (21.3 L cow−1 day−1) (P < 0.05). The highest (P < 0.05) feed intakes occurred in the CID + SP and CID treatments while intake was lowest (P < 0.05) for NSD + WSP and SCP + WLK. Weather data were collected on site at 10-min intervals, and from these, THI was calculated. Nonlinear regression modelling of MY × THI and heat-load management treatment demonstrated that cows in CID + SP showed no decline in MY out to a THI break point value of 83.2, whereas the pooled MY of the other treatments declined when THI >80.7. A combination of iron roof shade plus water sprinkling throughout the day provided the most effective control of heat load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This manual consists of written descriptions of jungle perch Kuhlia rupestris production and video material to demonstrate each of the key production steps. Video links are at the end of each major written section in the document. To activate the link use ctrl click. The videos enhance the instructive ability of this manual. The keys to producing jungle perch are:  maintaining broodstock in freshwater or low salinity water less than 5 ppt  spawning fish in full seawater at 28C  incubating eggs in full seawater. Salinities must not be less than 32 ppt  ensuring that first feed jungle perch larvae have an adequate supply of copepod nauplii  rearing larvae in full seawater under bright light  use of gentle aeration in tanks  postponing spawns until adequate densities of copepod nauplii are present in ponds  sustaining copepod blooms in ponds for at least 20 days  avoiding use of paddlewheels in ponds  supplementary feeding with Artemia salina and weaning diets from 20 days after hatch  harvesting of fingerlings or fry after they are 25-30 mm in length (50 to 60 days post hatch)  covering tanks of fingerlings with 5 mm mesh and submerging freshwater inlets to prevent jumping.