290 resultados para billygoat weed


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cat’s claw creeper (Dolichandra unguis-cati (Bignoniaceae) is a serious environmental weed in Queensland and New South Wales. It presents a threat to riparian and rainforest ecosystems and is often found in inaccessible locations that are not suitable for chemical or physical control methods. This makes biological control an important tool for managing this weed. The jewel beetle Hylaeo¬gena jureceki was approved for release in Australia in May 2012. Since approval, approximately 35,000 insects have been released at 53 sites. Multiple and single releases have been made at sites with the number of insects released ranging from 20 to 1590. Post-release monitoring before and after winter found the beetle persisting at 73% of release sites in southeast Queensland. Within the release sites, the beetle appears to disperse widely, up to 100 m over a 15 month period. Based on these early field results, it appears that the beetle will establish and spread in Queensland and New South Wales. In addition to direct field releases, the beetle has been supplied to various community and Landcare groups for breeding and field release. This will hasten the spread of the insect to a wider area. It is expected that the jewel beetle will complement the leaf-sucking tingid (Carvalhotingis visenda) and leaf-tying moth (Hypocosmia pyrochroma) that were released in 2007.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glyphosate-resistant Echinochloa colona L. (Link) is becoming common in non-irrigated cotton systems. Echinochloa colona is a small seeded species that is not wind-blown and has a relatively short seed bank life. These characteristics make it a potential candidate to attempt to eradicate resistant populations when they are detected. A long term systems experiment was developed to determine the feasibility of attempting to eradicate glyphosate resistant populations in the field. To this point the established Best Management Practice (BMP) strategy of two non-glyphosate actions in crop and fallow have been sufficient to significantly reduce the numbers of plants emerging, and remaining at the end of the season. Additional eradication treatments showed slight improvement on the BMP strategy, however were not significant overall. The effects of additional eradication tactics are expected to be more noticeable as the seed bank gets driven down in subsequent seasons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cropping region of northern Australia has a diverse range of cropping systems and weed flora. A fallow phase is commonly required between crops to enable the accumulation of stored soil water in these farming systems dominated by reduced tillage. During the fallow phase, weed control is important and is heavily reliant on herbicides. The most commonly used herbicide has been glyphosate. As a result of over-reliance on glyphosate, there are now seven confirmed glyphosate-resistant weeds and several glyphosate-tolerant species common in the region. As a result, the control of summer fallow weeds is become more complex. This paper outlines project work investigating improved weed control for summer fallows in the northern cropping region. Areas of research include weed ecology, chemical and non-chemical tactics, glyphosate resistance and resistance surveys. The project also has an economic and extension component. As a result of our research we have a better understanding of the ecology of major northern weeds and spread of glyphosate resistance in the region. We have identified and defined alternative herbicide and non-chemical approaches for the effective control of summer fallow weeds and have extended our research effectively to industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mikania micrantha Kunth (mikania vine) is a highly invasive tropical weed that was first discovered in Australia in 1997, and has been the target of a nationally cost-shared weed eradication program since 2003. Field crews have been effectively treating the weed with herbicide solutions containing 1 g a.i. L−1 of fluroxypyr. During the eradication program there have been limited opportunities to test alternative foliar herbicides or rates. A newly discovered infestation provided sufficient immature vines to compare the effectiveness of eight herbicide treatments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bellyache bush (Jatropha gossypifolia L. (Euphorbiaceae)) is a serious weed of dry tropical regions of northern Australia, with the potential to spread over much of the tropical savannah. It is well adapted to the harsh conditions of the dry tropics, defoliating during the dry season and rapidly producing new leaves with the onset of the wet season. In this study we examined the growth and biomass allocation of the three Queensland biotypes Queensland Green, Queensland Bronze and Queensland Purple) under three water regimes (water-stressed, weekly watering and constant water). Bellyache bush plants have a high capacity to adjust to water stress. The impact of water stress was consistent across the three biotypes. Water stressed plants produced significantly less biomass compared to plants with constant water, increased their biomass allocation to the roots and increased biomass allocation to leaf material. Queensland Purple plants allocated more resources to roots and less to shoots than Queensland Green (Queensland Bronze being intermediate). Queensland Green produced less root biomass than the other two biotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cat’s claw creeper vine, Dolichandra unguis-cati (L.) L.G.Lohmann (formerly known as Macfadyena unguis-cati (L.) A.H.Gentry), a Weed of National Significance (WoNS), is a structural woody parasite that is highly invasive along sensitive riparian corridors and native forests of coastal and inland eastern Australia. As part of evaluation of the impact of herbicide and mechanical/physical control techniques on the long-term reduction of biomass of the weed and expected return of native flora, we have set-up permanent vegetation plots in: (a) infested and now chemically/physically treated, (b) infested but untreated and (c) un-infested patches. The treatments were set up in both riparian and non-riparian habitats to document changes that occur in seed bank flora over a two-year post-treatment period. Response to treatment varied spatially and temporally. However, following chemical and physical removal treatments, treated patches exhibited lower seed bank abundance and diversity than infested and patches lacking the weed, but differences were not statistically significant. Thus it will be safe to say that spraying herbicides using the recommended rate does not undermine restoration efforts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cabomba caroliniana A.Gray (cabomba) is an invasive aquatic species causing serious environmental and socio-economic impacts. In particular, cabomba has a tendency to create large monospecific stands once introduced and appears to negatively affect native macrophyte diversity. Experiments have shown that cabomba, when cultured in isolation, grew significantly faster than any of the other macrophytes tested. However, competitive superiority over other macrophytes declined with increasing pH. Contrary to this, cabomba seemed to be a weak competitor in co-culture and few macrophytes showed signs of being affected by negative competitive interactions with cabomba. The reduction in growth performance at pH >7.5 and the fact that cabomba appears to be a weak competitor means that cabomba might not be able to establish everywhere and displace other plants. This weakness of cabomba could potentially be exploited in future management and rehabilitation efforts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seven Dactylopius tomentosus (Lamarck) biotypes were collected from a range of Cylindropuntia spp. in Mexico, South Africa and United States of America (USA) and imported into quarantine facilities at the Ecosciences Precinct. Host range trials were conducted for each biotype and further assessed against the Cylindropuntia species that are naturalised in Australia to determine the most effective biotype for each species. Host range was confined to the Cylindropuntia for all seven biotypes. In the efficacy trials, C. imbricata (Haw.) F.M.Knuth was killed by the ‘imbricata’ biotype within 16 weeks and C. kleiniae (DC.) F.M.Knuth died within 26 weeks. Cylindropuntia fulgida var. mamillata (DC.) Backeb. and C. imbricata were killed by the ‘fulgida’ biotype within 18 weeks. On-going trials suggest that C. rosea (DC.) Backeb. could be controlled by either the ‘acanthocarpa’ or the ‘acanthocarpa × echinocarpa’ biotypes. Cylindropuntia spinosior (Englem.) F.M.Knuth was not susceptible to any of the D. tomentosus biotypes assessed. A clear designation of which D. tomentosus biotype is most suited for each Cylindropuntia species will improve and increase the effectiveness of biological control of these weed species

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the sub-tropical grain region of Australia, cotton and grains systems are now dominated by flaxleaf fleabane (Conyza bonariensis (L.) Cronquist), feathertop Rhodes grass (Chloris virgata Sw.) and awnless barnyard grass (Echinochloa colona (L.) Link). While control of these weed species is best achieved when they are young, previous studies have shown a potential for reducing seed viability and minimising seed bank replenishment by applying herbicides when plants are reproductive. Pot trials were established over two growing seasons to examine the effects of 2,4-D, 2,4-D + picloram, glyphosate and glufosinate which had been successful on other species, along with paraquat and haloxyfop (grasses only). Herbicides were applied at ¾ field rates in an attempt not to kill the plants. Flaxleaf fleabane plants were sprayed at two growth stages (budding and flowering) and the grasses were sprayed at two stages (late tillering/booting and flowering). Spraying flaxleaf fleabane at flowering reduced seed viability to 0% (of untreated) in all treatments except glyphosate (51%) and 2,4-D + picloram (8%). Seed viability was not reduced with the first and second regrowths with the exception of 2,4-D + picloram where viability was reduced to 20%. When sprayed at budding only 2,4-D + picloram reduced seed viability in both trials. Spraying the grasses at late tillering/booting did not reduce viability except for glufosinate on awnless barnyard grass (50%). Applying herbicides at flowering resulted in 0% seed viability in awnless barnyard grass from glufosinate, paraquat and glyphosate and 0% viability in feathertop Rhodes grass for glufosinate. These herbicides were less effective on heads that emerged and flowered after spraying, only slightly reducing seed viability. These trials have shown that attempts to reduce seed viability have potential, however flaxleaf fleabane and feathertop Rhodes grass are able to regrow and will need on-going monitoring and control measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vachellia nilotica ssp. indica (hereafter, V. n. indica) is an important tree weed in Australia. Its dense populations induce undesirable changes in the vast areas of northern Australia. Because chemical and mechanical management options appear unviable for various reasons, biological management of this tree is considered a better option. Among the many trialled arthropods in Australian context, Anomalococcus indicus, a lecanodiaspid native to India, has been identified as a potent-candidate, since in India, its native terrain, it is the most widespread and occurs throughout the year. Severe infestations of A. indicus cause defoliation, wilting and death of branches, and occasionally the tree. Populations of A. indicus have been brought into Australia and are being tested for its host specificity under quarantine conditions. This article reports the physiological damage and stress it inflicts in the shoots of V. n. indica. Younger-nymphal instars of A. indicus feed on cortical-parenchyma cells of young stems, whereas the older instars and adults feed from the phloem of old stems. Two conspicuous responses of V. n. indica arising in response to the feeding action of A. indicus are changes in the cell-wall dynamics and irregular cell divisions. The feeding action of A. indicus elicits a sequence of reactions in the stem tissues of V. n. indica such as differentiation of thick-walled elements in the outer cortical parenchyma, differential thickening of cells with supernumerary layers of either suberin or lignin, proliferations of parenchyma and phloem, wall thickening and obliteration of inner lumen of phloem cells, and the sieve plates plugged with callosic deposits. The responses are the culminations of interaction between the virulence factor (one or more of the salivary proteins?) from A. indicus and the resistance factor in V. n. indica. We have analysed structural changes in the context of their functions, by comparing the feeding action of A. indicus with that of other hemipteroids. From the level of stress it induces, this study confirms that A. indicus has the potential to be an effective biological management of V. n. indica in Australia. © 2014 © 2014 Taylor & Francis and Aboricultural Association.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cascabela thevetia (L.) Lippold (Apocynaceae) is an invasive woody weed that has formed large infestations at several locations in northern Australia. Understanding the reproductive biology of C. thevetia is vital to its management. This paper reports results of a shade house experiment that determined the effects of light conditions (100% or 30% of natural light) and plant densities (one, two, four or eight plants per plot) on the growth, time to flowering and seed formation, and monthly pod production of two C. thevetia biotypes (peach and yellow). Shaded plants were significantly larger when they reached reproductive maturity than plants grown under natural light. However, plants grown under natural light flowered earlier (268 days compared with 369 days) and produced 488 more pods per pot (a 5-fold increase) over 3 years. The yellow biotype was slightly taller at reproductive maturity but significantly taller and with significantly greater aboveground biomass at the end of the study. Both biotypes flowered at a similar time under natural light and low plant densities but the yellow biotype was quicker to seed (478 versus 498 days), produced significantly more pods (364 versus 203 pods) and more shoot growth (577 g versus 550 g) than the peach biotype over 3 years. Higher densities of C. thevetia tended to significantly reduce the shoot and root growth by 981 g and 714 g per plant across all light conditions and biotypes over 3 years and increase the time taken to flower by 140 days and produce seeds by 184 days. For land managers trying to prevent establishment of C. thevetia or to control seedling regrowth once initial infestations have been treated, this study indicates that young plants have the potential to flower and produce seeds within 268 and 353 days, respectively. However, with plant growth and reproduction most likely to be slower under field conditions, annual surveillance and control activities should be sufficient to find and treat plants before they produce seeds and replenish soil seed banks. The most at-risk part of the landscape may be open areas that receive maximum sunlight, particularly within riparian habitats where plants would consistently have more favourable soil moisture conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adoption of dry direct seeding of rice in many Asian countries has resulted in increased interest among weed scientists to improve weed management strategies, because of the large and complex weed flora associated with dry-seeded rice (DSR). Tillage and cover cropping practices can be integrated into weed management strategies as these have been known to affect weed emergence for several ecological reasons. A study was conducted in the summer seasons of 2012 and 2013 at the Punjab Agricultural University, Ludhiana, India, to evaluate the effects of tillage, cover cropping, and herbicides on weed growth and grain yield of DSR. Most of the weed species (Echinochloa crus-galli, Echinochloa colona, Eleusine indica, and Euphorbia hirta) under study tended to populate the cover crop (CC) treatment more than the no-cover crop (no-CC) treatment. Zero tillage (ZT) resulted in higher weed densities of most of the weed species studied. The interaction effects of these treatments suggest that lesser herbicide efficacy in ZT and CC plots led to higher weed pressure and weed biomass. Grain yield was significantly higher in the conventional tillage system (2.40–3.32 t ha−1), because of lesser weed pressure, than in ZT (2.08–2.73 t ha−1). Almost all weed species increased in number and biomass production in the second year (2013) compared with the preceding year. Herbicide application (pendimethalin followed by bispyribac-sodium) alone, though significantly increased DSR grain yield over that of the unsprayed check, resulted in lesser grain yield compared with the weed-free check (5.07–5.12 t ha−1) by 14% and 27% in 2012 and 2013, respectively. This was mainly due to the buildup of biomass by weeds that escaped from herbicide application. The study reveals that conservation practices such as ZT can form an important component of integrated weed management in DSR, provided that herbicide efficacy be improved by adjusting rate and time of herbicide application in such systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parthenium weed (Parthenium hysterophorus L.) is believed to reduce the above- and below-ground plant species diversity and the above-ground productivity in several ecosystems. We quantified the impact of this invasive weed upon species diversity in an Australian grassland and assessed the resulting shifts in plant community composition following management using two traditional approaches. A baseline plant community survey, prior to management, showed that the above-ground community was dominated by P. hysterophorus, stoloniferous grasses, with a further high frequency of species from Malvaceae, Chenopodiaceae and Amaranthaceae. In heavily invaded areas, P. hysterophorus abundance and biomass was found to negatively correlate with species diversity and native species abundance. Digitaria didactyla Willd. was present in high abundance when P. hysterophorus was not, with these two species, contributing most to the dissimilarity seen between areas. The application of selective broad leaf weed herbicides significantly reduced P. hysterophorus biomass under ungrazed conditions, but this management did not yet result in an increase in species diversity. In the above-ground community, P. hysterophorus was partly replaced by the introduced grass species Cynodon dactylon L. (Pers.) 1 year after management began, increasing the above-ground forage biomass production, while D. didactyla replaced P. hysterophorus in the below-ground community. This improvement in forage availability continued to strengthen over the time of the study resulting in a total increase of 80% after 2 years in the ungrazed treatment, demonstrating the stress that grazing was imposing upon this grassland-based agro-ecosystem and showing that it is necessary to remove grazing to obtain the best results from the chemical management approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Australia has a very proud record of achievement in biological control of weeds and the underpinning science. From the earliest campaigns against prickly pear and lantana, weed biocontrol developed with major contributions from CSIRO and state governments to produce outstanding successes against weeds such as salvinia, rubber vine, Noogoora burr, bridal creeper and prickly pear. Maximum research activity occurred in the 1980s when some 30 scientists were working world wide on Australia’s weed problems. Activity declined gradually until the last few years when government divestment in agricultural research greatly diminished capacity. There are now approximately eight full-time scientist equivalents supporting Australia’s weed biocontrol effort. Australia may now need to adopt a team approach to tackle future major weed biological control projects.