355 resultados para arthropod pests
Resumo:
Diachasmimorpha kraussii is a larval parasitoid of dacine fruit flies. Host utilisation behaviour, including field foraging behaviour, is poorly known in this species. The diurnal foraging behaviour of D. kraussii and one of its common hosts, Bactrocera tryoni, in a nectarine orchard was concurrently recorded. Observations of mating, resting, feeding and oviposition were taken two-hourly on 42 trees, commencing at 07:00 h and terminating at 17:30 h, for 17 days. Resting and oviposition were common events within the orchard for both species, while mating behaviours were not recorded in the orchard for either species. Feeding was not observed for D. kraussii and was rare for B. tryoni. At the level of the individual tree there was a very weak, but significant correlation between parasitoid and fly abundance over a day, but when broken down to the individual observation periods the correlations were absent, or were weakly significant in an inconsistent manner (i.e. sometimes positively correlated, sometimes negatively correlated). At the orchard level, abundance of the parasitoid was not correlated with adult fly abundance. Results suggest that D. kraussii forage independently to adult B. tryoni, a result consistent with a prediction that their foraging is largely driven by larval or plant damage cues.
Resumo:
Diachasmimorpha kraussii is an endoparasitoid of larval dacine fruit flies. To date, the only host preference study done on D. kraussii has used fruit flies from outside its native range (Australia, Papua New Guinea, Solomon Islands). In contrast, this paper investigates host preference for four fly species (Bactrocera cacuminata, Bactrocera cucumis, Bactrocera jarvisi and Bactrocera tryoni), which occur sympatrically with the wasp in the Australian component of the native range. D. kraussii oviposition preference, host suitability (parasitism rate, number of progeny, sex ratio) and offspring performance measures (body length, hind tibial length, developmental time) were investigated with respect to the four fly species in the laboratory in both no-choice and choice situations. The parasitoid accepted all four fruit fly species for oviposition in both no-choice and choice tests; however, adult wasps only emerged from B. jarvisi and B. tryoni. Through dissection, it was demonstrated that parasitoid eggs were encapsulated in both B. cacuminata and B. cucumis. Between the two suitable hosts, measurements of oviposition preference, host suitability and offspring performance measurements either did not vary significantly or varied in an inconsistent manner. Based on our results, and a related study by other authors, we conclude that D. krausii, at the point of oviposition, cannot discriminate between physiologically suitable and unsuitable hosts.
Resumo:
Diachasmimorpha kraussii is a polyphagous endoparasitoid of dacine fruit flies. The fruit fly hosts of D. krausii, in turn, attack a wide range of fruits and vegetables. The role that fruits play in host selection behaviour of D. kraussii has not been previously investigated. This study examines fruit preference of D. kraussii through a laboratory choice-test trial and field fruit sampling. In the laboratory trial, oviposition preference and offspring performance measures (sex ratio, developmental time, body length, hind tibial length) of D. kraussii were investigated with respect to five fruit species [Psidium guajava L. (guava), Prunis persica L. (peach), Malus domestica Borkh. (apple), Pyrus communis L. (pear) and Citrus sinensis L. (orange)], and two fruit fly species (Bactrocera jarvisi and B. tryoni). Diachasmimorpha kraussii responded to infested fruit of all fruit types in both choice and no-choice tests, but showed stronger preference for guava and peach in the choice tests irrespective of the species of fly larvae within the fruit. The wasp did not respond to uninfested fruit. The offspring performance measures differed in a non-consistent fashion between the fruit types, but generally wasp offspring performed better in guava, peach and orange. The offspring sex ratio, except for one fruit/fly combination (B. jarvisi in apple), was always female biased. The combined results suggest that of the five fruits tested, guava and peach are the best fruit substrates for D. krausii. Field sampling indicated a non-random use of available, fruit fly infested fruit by D. kraussii. Fruit fly maggots within two fruit species, Plachonia careya and Terminalia catappa, had disproportionately higher levels of D. krausii parasitism than would be expected based on the proportion of different infested fruit species sampled, or levels of fruit fly infestation within those fruit.
Resumo:
The influence of insect attack on bud fall and subsequent poor flowering in cultivated hibiscus (Hibiscus rosa-sinensis) was studied in cages and in the field in southern Queensland. Three species of Hemiptera (most importantly Aulacosternum nigrorubrum but also Nezara viridula and Tectocoris diophthalmus) caused some bud fall in 2 plantations studied. Adults of Macroura concolor suppressed flowering for long periods in spring and summer. Data from white funnel traps and counts in flowers showed that M. concolor was most active in these seasons. Methiocarb (0.75 g a.i./litre) reduced beetle numbers and increased flowering. When 15 or more adults of M. concolor occurred per bud (or flower) most buds fell and few flowers were produced, but when beetles declined to 10 or fewer many buds survived and widespread flowering occurred. Larvae fed in fallen buds and flowers and the mean duration of development of the combined immature stages was 14 days at 26 deg C. The preference of adults of M. concolor for pale coloured flowers was examined. Hibiscus plants produced most buds from December to June with lower numbers in winter and spring (July to November). Bud production in spring and early summer (September-December) varied greatly and probably contributed to poor flowering, however, even when large numbers of buds occurred very few flowers were produced because of the activities of M. concolor.
Resumo:
Understanding the host range for all of the fruit fly species within the South Pacific region is vital to establishing trade and quarantine protocols. This is important for the countries within the region and their trade partners. A significant aspect of the Australian Centre for International Agricultural Research (ACIAR) and Regional Fruit Fly Projects (RFFP) has been host fruit collecting which has provided information on fruit fly host records in the seven participating countries. This work is still continuing in all project countries at different intensities. In the Cook Islands, Fiji, Tonga and Western Samoa, fruit surveys have assumed a quarantine surveillance role, with a focus on high risk fruits, such as guava, mango, citrus, bananas, cucurbits and solanaceous fruits. In the Solomon Islands, Vanuatu and the Federated States of Micronesia (FSM), fruit surveys are still at the stage where host ranges are far from complete. By the end of the current project a more complete picture of the fruit fly hosts in these countries will have been gained. A brief summary of the data collected to date is as follows: 23 947 fruit samples collected to date; 2181 positive host fruit records; 31 fruit fly species reared from fruit; 12 species reared from commercial fruit. A commercial fruit is classed as an edible fruit with potential for trade at either a local or international level. This allows for the inclusion of endemic fruit species that have cultural significance as a food source. On the basis of these results, there are fruit fly species of major economic importance in the South Pacific region. However, considerably more fruit survey work is required in order to establish a detailed understanding of all the pest species.
Resumo:
This book provides for the first time a detailed host list for all the fruit fly species (Tephritidae) known from Australia. It includes available distribution, male lure and host plant information for the 278 species currently recorded from Australia (including Torres Strait Islands but excluding Christmas and Cocos (Keeling) islands in the Indian Ocean). This total includes 269 described species plus nine undescribed species of Tephritinae. Thirteen fruit fly specialists from throughout Australia collaborated with QDPI in the production of this book. It provides an invaluable reference source for anyone involved in fruit fly research, ecological studies, pre- and post-harvest control, regulation, quarantine and market access.
Resumo:
This work evaluated the following aspects of the use of exclusion netting in low chill stone fruit: the efficacy of protection from fruit fly for this highly susceptible crop; the effects on environmental factors; and the effects on crop development. Concurrently, an economic viability study on the use of exclusion netting was undertaken. The trial site was a 0.6-ha block of low chill stone fruit at Nambour, south-east Queensland, Australia. In this area, populations of Queensland fruit fly (Bactrocera tryoni) are known to be substantial, particularly in spring and summer. The trial block contained healthy 4-year-old trees as follows: 96 peach trees (Prunus persica cv. Flordaprince) and 80 nectarine trees (40 P. persica var. nucipersica cv. White Satin and 40 P. persica var. nucipersica cv. Sunwright). Exclusion netting was installed over approximately half of the block in february 2001. The net was a UV-stabilized structural knitted fabric made from high-density polyethylene yarn with a 10-year prorated UV degradation warranty. The results demonstrated the efficacy of exclusion netting in the control of fruit flies. Exclusion netting increased maximum temperatures by 4.4 deg C and decreased minimum temperatures by 0.5 deg C. Although exclusion netting reduced irradiance by approximately 20%, it enhanced fruit development by 7-10 days and improved fruit quality by increasing sugar concentration by 20-30% and colour intensity by 20%.
Resumo:
Citrus crops are considered to be relatively poor hosts for Queensland fruit fly, Bactrocera tryoni (Froggatt), as for other tephritid species. Australian citrus growers and crop consultants have reported observable differences in susceptibility of different citrus cultivars under commercial growing conditions. In this study we conducted laboratory tests and field surveys to determine susceptibility to B. tryoni of six citrus cultivars [(Eureka lemon (Citrus limon (L.) Osbeck); Navel and Valencia oranges (C. sinensis (L.) Osbeck); and Imperial, Ellendale, and Murcott mandarins (C. reticulata Blanco)]. The host susceptibility of these citrus cultivars was quantified by a Host Susceptibility Index, which is defined as the number of adult flies produced per gram of fruit infested at a calculated rate of one egg per gram of fruit. The HSI was ranked as Murcott (0.083) > Imperial (0.052) ≥ Navel (0.026) ≥ Ellendale (0.020) > Valencia (0.008) ≥ Eureka (yellow) (0.002) > Eureka (green) (0). Results of the laboratory study were in agreement with the level of field infestation in the four citrus cultivars (Eureka lemon, Imperial, Ellendale, and Murcott mandarins) that were surveyed from commercial orchards under baiting treatments against fruit flies in the Central Burnett district of Queensland. Field surveys of citrus hosts from the habitats not subject to fruit fly management showed that the numbers of fruit flies produced per gram of fruit were much lower, compared with the more susceptible noncitrus hosts, such as guava (Psidium guajava L.), cherry guava (P. littorale Raddi), mulberry (Morus nigra L.), loquat (Eriobotrya japonica (Thunb.) Lindl.), and pear (Pyrus communis L.). Therefore, the major citrus crops commercially cultivated in Australia have a relatively low susceptibility to B. tryoni, with Eureka lemons being a particularly poor host for this tephritid fruit fly.
Resumo:
Using caged guava trees in Queensland, Australia, provided with food and oviposition sites, the foraging behaviour of females of the tephritid Bactrocera tryoni was investigated in relation to hunger for protein, the presence or absence of bacteria as a source of protein, the degree of prior experience with host fruit and quality of host fruit for oviposition. One aim was to evaluate whether it is immature or mature B. tryoni females that are responsible for initially inoculating host fruit surfaces with "fruit-fly-type" bacteria, the odour of which is known to attract B. tryoni females. Three-week-old immature females provided with sucrose but deprived of protein from eclosion had a much greater propensity than 3-week-old protein-fed mature females to visit vials containing fruit-fly-type bacteria, irrespective of whether vials were associated with adjacent host fruit or not. In the absence of associated bacteria in vials, immature females had a much lower propensity than mature females to visit host fruit. In the presence of bacteria in vials, however, propensity of immature and mature females to visit fruit was about equal. Mature (but not immature) females were more inclined to visit fruit that ranked higher for oviposition (nectarines) than fruit that ranked lower (sweet oranges). Mature females that attempted oviposition during a single 3-min exposure period to a nectarine prior to release were much more likely to find a nectarine than were mature females naive to fruit or immature females with or without prior contact with fruit. Exposure to a nectarine before release did not affect the propensity of either mature or immature females to alight on an odourless visual model of a nectarine, however. As judged by numbers of leaves visited, protein-deprived immature females were more active than protein-fed mature females, irrespective of the sorts of resources on a tree. It was concluded that: the 1st B. tryoni females to arrive on the fruit of a host tree and therefore inoculate the fruit with fruit-fly-type bacteria were unlikely to be sexually immature, but to be mature as a result of having earlier acquired protein elsewhere; the odour of colonies of fruit-fly-type bacteria when associated with host fruit attracted protein-hungry but not protein-fed females; and the odour of the fruit itself attracted mature females (especially experienced ones) but not immature females.
Resumo:
Laboratory colonies of Bactrocera passiflorae (Froggatt) and B. xanthodes (Broun) were established at Koronivia Research Station, Fiji in 1991. Laboratory rearing of the two economically important species was a prerequisite to studies conducted on protein bait spray and quarantine treatment development. To increase the production of laboratory reared fruit flies for this research and also to have a substitute larval diet available, replicated comparisons of the effectiveness of larval diets were carried out using B. passiflorae and B. xanthodes. The diets compared were pawpaw/bagasse, dehydrated carrot and diets used for culturing Mediterranean fruit fly (Ceratitis capitata Wiedemann), Oriental fruit fly (B. dorsalis Hendel), melon fly (B. cucurbitae Coquillett) and B. latifrons (Hendel), pawpaw diet and breadfruit diet. B. passiflorae and B. xanthodes eggs seeded onto the various diets were allowed to develop into larvae, pupae and adults. The percentage egg hatch, number of pupae recovered, percentage pupal mortality, weight of 100 pupae, number of adults and percentage eclosion were used to determine the effectiveness of the diets. Results showed that pawpaw/bagasse and dehydrated carrot diets performed favorably for both species. The pawpaw diet currently used as standard larval diets for both species is the most readily available and easiest to use. Breadfruit diet was tested on B. xanthodes only and showed that it was a suitable substitute for the pawpaw-based diets. Other larval diets, cassava/pawpaw and banana diets, that have been developed and used in the South Pacific areas are also discussed in this paper. When pawpaw or breadfruit are not available, dehydrated carrot diet may be substituted for fruit-based larval diets.
Resumo:
Laboratory colonies of 15 economically important species of multi-host fruit flies (Diptera:Tephritidae) have been established in eight South Pacific island countries for the purpose of undertaking biological studies, particularly host status testing and research on quarantine treatments. Laboratory rearing techniques are based on the development of artificial diets for larvae consisting predominately of the pulp of locally available fruits including pawpaw, breadfruit and banana. The pawpaw diet is the standard diet and is used in seven countries for rearing 11 species. Diet ingredients are standard proportions of fruit pulp, hydrolysed protein and a bacterial and fungal inhibitor. The diet is particularly suitable for post-harvest treatment studies when larvae of known age are required. Another major development in the laboratory rearing system is the use of pure strains of Enterobacteriaceae bacterial cultures as important adult-feeding supplements. These bacterial cultures are dissected out of the crop of wild females, isolated by sub-culturing, and identified before supply to adults on peptone yeast extract agar plates. Most species are egged using thin, plastic receptacles perforated with 1 mm oviposition holes, with fruit juice or larval diet smeared internally as an oviposition stimulant. Laboratory rearing techniques have been standardised for all of the Pacific countries. Quality control monitoring is based on acceptable ranges in per cent egg hatch, pupal weight and pupal mortality. Colonies are rejuvenated every 6 to 12 months by crossing wild males with laboratory-reared females and vice versa. The standard rearing techniques, equipment and ingredients used in collecting, establishment, maintenance and quality control of these fruit fly species are detailed in this paper.
Resumo:
Fruit size and quality are major problems in early-season stonefruit cultivars grown in Australia and South-East Asia. In Australia, Thailand and Vietnam, new training and trellising systems are being developed to improve yield and fruit quality. Australian trials found that new training systems, such as the Open Tatura system, are more productive compared with standard vase-trained trees. We established new crop-loading indices for low-chill stonefruit to provide a guide for optimum fruit thinning based on fruit number per canopy surface and butt cross sectional area. Best management practices were developed for low-chill stonefruit cultivation using growth retardants, optimizing leaf nitrogen concentrations and controlling rates and timing of irrigation. Regulated deficit irrigation (RDI) improved fruit sugar concentrations by restricting water application during stage II of fruit growth. New pest and disease control measures are also being developed using a new generation of fruit fly baits. Soft insecticides such as (Spinosad) are used at significantly lower concentrations and have lower mammalian toxicity than the organophosphates currently registered in Australia. In addition, fruit fly exclusion netting effectively eliminated fruit fly and many other insect pests from the orchard with no increase in diseases. This netting system increased sugar concentrations of peach and nectarine by as much as 30%. Economic analyses showed that the break-even point can be reduced from 12 to 6 years Open Tatura trellising and exclusion netting.
Resumo:
Omnidemptus is described as a new monotypic genus of ascomycetes and O. affinis isolated from leaves of Panici effusi var. effusi in Queensland, Australia, is shown to have as its anamorph a new species of the hyphomycete genus Mycoleptodiscus, M. affinis.
Resumo:
Shoot blight symptom was found on persimmon (Diospyros kaki) in southern Western Australia in December 2010. The pathogen was isolated and identified as Diaporthe neotheicola on the basis of morphology, sequence analysis of the internal transcribed spacer (ITS) and the translation elongation factor 1-α (TEF). A pathogenicity test was conducted and Koch's postulates were fulfilled by re-isolation of the fungus from diseased tissues. This is the first report of D. neotheicola causing shoot blight on persimmon in Australia and worldwide. © 2012 Australasian Plant Pathology Society Inc.