256 resultados para Wheat Grain Cooking
Resumo:
Broadscale irrigation is a major land use in many of the priority neighbourhood catchments (45,218 hectares in Central Highlands and Dawson) and there is a requirement to provide technical support to sub-regional group field officers and landholders in these priority catchments. This technical support will assist field staff and land managers to identify and implement appropriate, sustainable technologies and management practices.
Resumo:
Development and evaluation of high yielding feed wheat grermplasm.
Resumo:
Banana prawn (Fenneropenaeus merguiensis) juveniles (1-2 g) were compared for survival, growth and condition after feeding in tanks over one month with several simple diets based on organically certified whole wheat flour. All feeds were applied once per day at 6% of the starting body weight, and produced high survival (>94%). A commercial Australian prawn feed used as the control diet produced the highest (P<0.05) growth (101% weight gain) and condition measured as the length of antennae (13.2 cm). The unfed control had significantly (P<0.05) lower survival (56%), and resulted in a weight loss (3.1%) and the shortest antennae (9.4 cm). Adding free flour to tanks produced lower (P<0.05) growth (6.9%) and shorter (P<0.05) antennae (10.3 cm) than adding pelletised flour with low levels (dry weight) of additional nutritional substances and feed attractants (chicken’s whole egg: 1.5%, polychaete slurry: 1.1% and 6.8%, molasses: 4.2%). Rolling the flour into a dough ball also appeared to marginally improve its direct utilisation by the prawns. These results are considered within the context of appropriate nutrition for Penaeids and successfully producing certified organic prawns in Australia.
Resumo:
We present a participatory modelling framework that integrates information from interviews and discussions with farmers and consultants, with dynamic bio-economic models to answer complex questions on the allocation of limited resources at the farm business level. Interviews and discussions with farmers were used to: describe the farm business; identify relevant research questions; identify potential solutions; and discuss and learn from the whole-farm simulations. The simulations are done using a whole-farm, multi-field configuration of APSIM (APSFarm). APSFarm results were validated against farmers' experience. Once the model was accepted by the participating farmers as a fair representation of their farm business, the model was used to explore changes in the tactical or strategic management of the farm and results were then discussed to identify feasible options for improvement. Here we describe the modelling framework and present an example of the application of integrative whole farm system tools to answer relevant questions from an irrigated farm business case study near Dalby (151.27E - 27.17S), Queensland, Australia. Results indicated that even though cotton crops generates more farm income per hectare a more diversified rotation with less cotton would be relatively more profitable, with no increase in risk, as a more cotton dominated traditional rotation. Results are discussed in terms of the benefits and constraints from developing and applying more integrative approaches to represent farm businesses and their management in participatory research projects with the aim of designing more profitable and sustainable irrigated farming systems.
Resumo:
Fumigation with phosphine has the potential to disinfest grain stored in silo bags but only limited research has been conducted on whether phosphine fumigation can be undertaken effectively and safely in this form of storage. Fumigation with phosphine was tested on two (70 m) replicate silo bags each containing 240 t of wheat (9.9 and 9.2% m.c.). The target application rate of phosphine was 1.5 g m 3 with a fumigation period of 17 days. Aluminium phosphide tablets were inserted into each bag at ten release points spaced at 7 m intervals starting 3.5 m from either end of the bag. A total of 14 bioassay cages containing mixed age populations of strongly phosphine resistant Rhyzopertha dominica (F.) were inserted into each fumigated silo bag. Complete control of all life stages of R. dominica was achieved at all locations in the fumigated silo bags. Phosphine concentrations at release points increased rapidly and remained high for the duration of the fumigation. Concentrations at midway points were always lower than at the release points but exceeded 215 ppm for ten days. The diffusion coefficient of available phosphine averaged over the first three full days of the fumigation for both fumigated silo bags was 2.8 x 10 7. Venting the silo bag with an aeration fan reduced the phosphine concentration by 99% after 12 h. Relatively small amounts of phosphine continued to desorb after the venting period. Although grain temperature at the core of the silo bags remained stable at 29degreesC for 17 days, grain at the surface of the silo bags fluctuated daily with a mean of 29degreesC. The results demonstrate that silo bags can be fumigated with phosphine for complete control of infestations of strongly phosphine resistant R. dominica and potentially other species.
Resumo:
Australian and international chickpea (Cicer arietinum) cultivars and germplasm accessions, and wild annual Cicer spp. in the primary and secondary gene pools, were assessed in glasshouse experiments for levels of resistance to the root-lesion nematodes Pratylenchus thornei and P. neglectus. Lines were grown in replicated experiments in pasteurised soil inoculated with a pure culture of either P. thornei or P. neglectus and the population density of the nematodes in the soil plus roots after 16 weeks growth was used as a measure of resistance. Combined statistical analyses of experiments (nine for P. thornei and four for P. neglectus) were conducted and genotypes were assessed using best linear unbiased predictions. Australian and international chickpea cultivars possessed a similar range of susceptibilities through to partial resistance. Wild relatives from both the primary (C. reticulatum and C. echinospermum) and secondary (C. bijugum) gene pools of chickpea were generally more resistant than commercial chickpea cultivars to either P. thornei or P. neglectus or both. Wild relatives of chickpea have probably evolved to have resistance to endemic root-lesion nematodes whereas modern chickpea cultivars constitute a narrower gene pool with respect to nematode resistance. Resistant accessions of C. reticulatum and C. echinospermum were crossed and topcrossed with desi chickpea cultivars and resistant F(4) lines were obtained. Development of commercial cultivars with the high levels of resistance to P. thornei and P. neglectus in these hybrids will be most valuable for areas of the Australian grain region and other parts of the world where alternating chickpea and wheat crops are the preferred rotation.
Resumo:
Post head-emergence frost causes substantial losses for Australian barley producers. Varieties with improved resistance would have a significant positive impact on Australian cropping enterprises. Five barley genotypes previously tested for reproductive frost resistance in southern Australia were tested, post head-emergence, in the northern grain region of Australia and compared with the typical northern control cultivars, Gilbert and Kaputar. All tested genotypes suffered severe damage to whole heads and stems at plant minimum temperatures less than -8degreesC. In 2003, 2004 and 2005, frost events reaching a plant minimum temperature of ~-6.5degreesC did not result in the complete loss of grain yield. Rather, partial seed set was observed. The control genotype, Gilbert, exhibited seed set that was greater than or equal to that of any genotype in each year, as did Kaputar when tested in 2005. Thus, Gilbert and Kaputar were at least as resistant as any tested genotype. This contrasts with trial results from the southern grain region where Gilbert was reported to be less resistant than Franklin, Amagi Nijo and Haruna Nijo. Hence, rankings for post head-emergence frost damage in the northern grain region differ from those previously reported. These results indicate that Franklin, Amagi Nijo and Haruna Nijo are not likely to provide useful sources of frost resistance or markers to develop improved varieties for the northern grain region of Australia.
Resumo:
Phosphine fumigation is commonly used to disinfest grain of insect pests. In fumigations which allow insect survival the question of whether sublethal exposure to phosphine affects reproduction is important for predicting population recovery and the spread of resistance. Two laboratory experiments addressed this question using strongly phosphine resistant lesser grain borer, Rhyzopertha dominica (F.). Offspring production was examined in individual females which had been allowed to mate before being fumigated for 48 h at 0.25 mg L -1. Surviving females produced offspring but at a reduced rate during a two-week period post fumigation compared to unfumigated controls. Cumulative fecundity of fumigated females from 4 weeks of oviposition post fumigation was 25% lower than the cumulative fecundity of unfumigated females. Mating potential post fumigation was examined when virgin adults (either or both sexes) were fumigated individually (48 h at 0.25 mg L -1) and the survivors were allowed to mate and reproduce in wheat. All mating combinations produced offspring but production in the first week post fumigation was significantly suppressed compared to the unfumigated controls. Offspring suppression was greatest when both sexes were exposed to phosphine followed by the pairing of fumigated females with unfumigated males and the least suppression was observed when males only were fumigated. Cumulative fecundity from 4 weeks oviposition post fumigation of fumigated females paired with fumigated males was 17% lower than the fecundity of unfumigated adult pairings. Both of these experiments confirmed that sublethal exposure to phosphine can reduce fecundity in R. dominica.
Resumo:
The effect of partially replacing rolled barley (86.6% of control diet) with 20% wheat dried distillers grains plus solubles (DDGS), 40% wheat DDGS, 20% corn DDGS, or 40% corn DDGS (dietary DM basis) on rumen fluid fatty acid (FA) composition and some rumen bacterial communities was evaluated using 100 steers (20 per treatment). Wheat DDGS increased the 11t-to 10t-18:1 ratio (P < 0.05) in rumen fluid and there was evidence that the conversion of trans-18:1 to 18:0 was reduced in the control and wheat DDGS diets but not in the corn DDGS diet. Bacterial community profiles obtained using denaturing gradient gel electrophoresis and evaluated by Pearson correlation similarity matrices were not consistent for diet and, therefore, these could not be linked to different specific rumen FA. This inconsistency may be related to the nature of diets fed (dominant effect of barley), limited change in dietary composition as the result of DDGS inclusion, large animal-to-animal variation, and possibly additional stress as a result of transport just before slaughter. Ruminal densities of a key fiber-digesting bacteria specie that produces 11t-18:1 from linoleic and linolenic acids (Butyrivibrio fibrisolvens), and a lactate producer originally thought responsible for production of 10t, 12c-18:2 (Megasphaera elsdenii) were not influenced by diet (P > 0.05).
Resumo:
The status of the exotic clerid beetle Opetiopalpus scutellaris Panzer has been unclear due to the ambiguous nature of the single previous Australian record. Recent pheromone trapping at grain stores in Western Australia indicate that O. scutellaris is locally naturalised within the Western Australian wheatbelt. It is considered likely that the trapped O. scutellaris specimens originated from surrounding areas rather than being directly associated with grain.
Resumo:
Spontaneous sequence changes and the selection of beneficial mutations are driving forces of gene diversification and key factors of evolution. In highly dynamic co-evolutionary processes such as plant-pathogen interactions, the plant's ability to rapidly adapt to newly emerging pathogens is paramount. The hexaploid wheat gene Lr34, which encodes an ATP-binding cassette (ABC) transporter, confers durable field resistance against four fungal diseases. Despite its extensive use in breeding and agriculture, no increase in virulence towards Lr34 has been described over the last century. The wheat genepool contains two predominant Lr34 alleles of which only one confers disease resistance. The two alleles, located on chromosome 7DS, differ by only two exon-polymorphisms. Putatively functional homoeologs and orthologs of Lr34 are found on the B-genome of wheat and in rice and sorghum, but not in maize, barley and Brachypodium. In this study we present a detailed haplotype analysis of homoeologous and orthologous Lr34 genes in genetically and geographically diverse selections of wheat, rice and sorghum accessions. We found that the resistant Lr34 haplotype is unique to the wheat D-genome and is not found in the B-genome of wheat or in rice and sorghum. Furthermore, we only found the susceptible Lr34 allele in a set of 252 Ae. tauschii genotypes, the progenitor of the wheat D-genome. These data provide compelling evidence that the Lr34 multi-pathogen resistance is the result of recent gene diversification occurring after the formation of hexaploid wheat about 8,000 years ago.
Resumo:
Nested association mapping (NAM) offers power to dissect complex, quantitative traits. This study made use of a recently developed sorghum backcross (BC)-NAM population to dissect the genetic architecture of flowering time in sorghum; to compare the QTL identified with other genomic regions identified in previous sorghum and maize flowering time studies and to highlight the implications of our findings for plant breeding. A subset of the sorghum BC-NAM population consisting of over 1,300 individuals from 24 families was evaluated for flowering time across multiple environments. Two QTL analysis methodologies were used to identify 40 QTLs with predominately small, additive effects on flowering time; 24 of these co-located with previously identified QTL for flowering time in sorghum and 16 were novel in sorghum. Significant synteny was also detected with the QTL for flowering time detected in a comparable NAM resource recently developed for maize (Zea mays) by Buckler et al. (Science 325:714-718, 2009). The use of the sorghum BC-NAM population allowed us to catalogue allelic variants at a maximal number of QTL and understand their contribution to the flowering time phenotype and distribution across diverse germplasm. The successful demonstration of the power of the sorghum BC-NAM population is exemplified not only by correspondence of QTL previously identified in sorghum, but also by correspondence of QTL in different taxa, specifically maize in this case. The unification across taxa of the candidate genes influencing complex traits, such as flowering time can further facilitate the detailed dissection of the genetic control and causal genes.
Resumo:
Genotypic variability in root system architecture has been associated with root angle of seedlings and water extraction patterns of mature plants in a range of crops. The potential inclusion of root angle as a selection criterion in a sorghum breeding program requires (1) availability of an efficient screening method, (2) presence of genotypic variation with high heritability, and (3) an association with water extraction pattern. The aim of this study was to determine the feasibility for inclusion of nodal root angle as a selection criterion in sorghum breeding programs. A high-throughput phenotypic screen for nodal root angle in young sorghum plants has recently been developed and has been used successfully to identify significant variation in nodal root angle across a diverse range of inbred lines and a mapping population. In both cases, heritabilities for nodal root angle were high. No association between nodal root angle and plant size was detected. This implies that parental inbred lines could potentially be used to asses nodal root angle of their hybrids, although such predictability is compromised by significant interactions. To study effects of nodal root angle on water extraction patterns of mature plants, four inbred lines with contrasting nodal root angle at seedling stage were grown until at least anthesis in large rhizotrons. A consistent trend was observed that nodal root angle may affect the spatial distribution of root mass of mature plants and hence their ability to extract soil water, although genotypic differences were not significant. The potential implications of this for specific adaptation to drought stress are discussed. Results suggest that nodal root angle of young plants can be a useful selection criterion for specific drought adaptation, and could potentially be used in molecular breeding programs if QTLs for root angle can be identified. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) is a common stored grain pest for which a wide range of suitable resources has been recorded. These beetles are facultatively fungivorous and their resource range may extend to fungi associated with non-grain resources (e.g. cotton seed) and other decaying plant matter. Little is known with respect to fungi in terms of resource location by these beetles in the field. We, therefore, conducted a series of experiments in laboratory arenas, glasshouse cages and the field to determine how beetles respond to grain resources in relation to cotton seed (together with its lint stubble and associated fungal flora). Results from the tests conducted in relatively small arenas and cages in the laboratory and glasshouse reveal that the responses of T. castaneum adults to food resources were twice as strong when walking as when flying (as measured by the proportion of the released beetles that were trapped). Also, a clear preference for linted cotton seeds was evident in walking T. castaneum, especially in small-scale arenas in the laboratory, where at least 60% of beetles released preferred linted cotton seeds over wheat and sorghum. Similarly, in cages (1 m3) they responded five times more strongly to linted cotton seed than to conventional grain resources. However, this pattern was not consistent with those obtained from field trapping over 20 m and the beetles did not show any particular preference to any of the resources tested above. Our results suggest a focus on walking beetles in trapping studies for population estimations and, for developing effective food-based trapping lures, the potential use of active volatiles from the fungi associated with linted cotton seed. © 2012 Elsevier Ltd.
Resumo:
We tested, in an olfactometer, whether or not Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) responds preferentially to the volatiles that emanate from the fungi associated with cotton [Gossypium hirsutum L. (Malvaceae)] seed over those that emanate from cereals, because cereals are usually portrayed as the primary resources of these beetles. Pairwise comparisons were conducted between cotton seed, wheat (Triticum aestivum L.), and sorghum [Sorghum bicolor (L.) Moench] (both Poaceae); volatiles were tested from intact seeds and from both water and ethanol extracts. The results demonstrate that T. castaneum is attracted more strongly to cotton seeds with its lint contaminated with fungi, than to the conventional resources of this species (i.e., wheat and sorghum). Further tests prove that it is the fungus on the lint that produces the active volatiles, because the beetles did not respond to sterilized cotton lint (i.e., without the fungi typically associated with it when cotton seed is stored). Tests with five fungal cultures (each representing an unidentified species that was isolated from the field-collected cotton lint) were variable across the cultures, with only one of them being significantly attractive to the beetles. The others were not attractive and one may even have repulsed the beetles. The results are consistent with the beetles having a strong ecological association with fungi and suggest it would be worth investigating the ecology of T. castaneum from this perspective. © 2012 The Netherlands Entomological Society.