281 resultados para Plant protection
Resumo:
Fruit flies require protein for reproductive development and actively feed upon protein sources in the field. Liquid protein baits mixed with insecticide are used routinely to manage pest fruit flies, such as Bactrocera tryoni (Froggatt). However, there are still some gaps in the underpinning science required to improve the efficacy of bait spray technology. The spatial and temporal foraging behaviour of B. tryoni in response to protein was investigated in the field. A series of linked trials using either wild flies in the open field or laboratory-reared flies in field cages and a netted orchard were undertaken using nectarines and guavas. Key questions investigated were the fly's response to protein relative to: height of protein within the canopy, fruiting status of the tree, time of day, season and size of the experimental arena. Canopy height had a significant response on B. tryoni foraging, with more flies foraging on protein in the mid to upper canopy. Fruiting status also had a significant effect on foraging, with most flies responding to protein when applied to fruiting hosts. B. tryoni demonstrated a repeatable diurnal response pattern to protein, with the peak response being between 12:0016:00 h. Season showed significant but unpredictable effects on fruit fly response to protein in the subtropical environment where the work was undertaken. Relative humidity, but not temperature or rainfall, was positively correlated with protein response. The number of B. tryoni responding to protein decreased dramatically as the spatial scale increased from field cage through to the open field. Based on these results, it is recommend that, to be most effective, protein bait sprays should be applied to the mid to upper canopies of fruiting hosts. Overall, the results show that the protein used, an industry standard, has very low attractancy to B. tryoni and that further work is urgently needed to develop more volatile protein baits.
Resumo:
BACKGROUND: The recent development of very high resistance to phosphine in rusty grain beetle, Cryptolestes ferrugineus (Stephens), seriously threatens stored-grain biosecurity. The aim was to characterise this resistance, to develop a rapid bioassay for its diagnosis to support pest management and to document the distribution of resistance in Australia in 20072011. RESULTS: Bioassays of purified laboratory reference strains and field-collected samples revealed three phenotypes: susceptible, weakly resistant and strongly resistant. With resistance factors of > 1000 x , resistance to phosphine expressed by the strong resistance phenotype was higher than reported for any stored-product insect species. The new time-to-knockdown assay rapidly and accurately diagnosed each resistance phenotype within 6 h. Although less frequent in western Australia, weak resistance was detected throughout all grain production regions. Strong resistance occurred predominantly in central storages in eastern Australia. CONCLUSION: Resistance to phosphine in the rusty grain beetle is expressed through two identifiable phenotypes: weak and strong. Strong resistance requires urgent changes to current fumigation dosages. The development of a rapid assay for diagnosis of resistance enables the provision of same-day advice to expedite resistance management decisions. (c) 2012 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.
Resumo:
The red flour beetle is a cosmopolitan pest of stored grain and stored grain products. The pest has developed resistance to phosphine, the primary chemical used for its control. The reproductive output of survivors from a phosphine treatment is an important element of resistance development but experimental data are lacking. We exposed mated resistant female beetles to 0.135 mg/L of phosphine for 48 h at 25°C. Following one week of recovery we provided two non-exposed males to half of the phosphine exposed females and to half of the non-exposed control females. Females that had been exposed produced significantly fewer offspring than non-exposed females. Females that remained isolated produced significantly fewer offspring than both exposed females with access to males and non-exposed controls (P<0.05). Some females were permanently damaged from exposure to phosphine and did not reproduce even when given access to males. We also examined the additional effects of starvation prior to phosphine exposure on offspring production. Non-exposed starved females experienced a small reduction in mean offspring production in the week following starvation, followed by a recovery in the second week. Females that were starved and exposed to phosphine demonstrated a very significant reduction in offspring production in the first week following exposure which remained significantly lower than that of starved non-exposed females (P<0.05). These results demonstrate a clear sublethal effect of phosphine acting on the female reproductive system and in some individuals this can lead to permanent reproductive damage. Pest population rebound after a fumigation may be slower than expected which may reduce the rate of phosphine resistance development. The results presented strongly suggest that phosphine resistance models should include sublethal effects. © 2012 Ridley et al.
Resumo:
Rust (caused by Puccinia arachidis) and late leaf spot (LLS, caused by Mycosphaerella berkeleyi) can cause significant yield losses in Australian peanut crops. Until recently, all commercial peanut varieties were highly susceptible to these pathogens, but the new Australian cultivar Sutherland has significantly higher levels of resistance than the older cultivars. Field trials were conducted at two sites in Queensland to (a) confirm the improved resistance of cv. Sutherland over another commercial cultivar, Menzies, (b) study the effects of timing of first spray, spray interval and cultivar on disease severity and yield, and (c) develop a suitable fungicide management program for cv. Sutherland. In the 2006 and 2007 trials, rust and LLS developed slower and had lower final disease ratings and AUDPC values on unsprayed plots of cv. Sutherland than on cv. Menzies. The timing of the first spray is critical in managing both rust and late leaf spot, with the results demonstrating that the first fungicide spray on cv. Sutherland should be applied as soon as rust and LLS are first seen on cv. Menzies. In most trials spray intervals of 14 days or 21 days were suitable to effectively control rust and LLS. In years with low disease pressure, few, if any, fungicide applications will be needed to manage the diseases, but in other years up to four sprays may be necessary. © Australasian Plant Pathology Society Inc. 2012.
Resumo:
The banana-spotting bug, Amblypelta lutescens lutescens Distant (Heteroptera: Coreidae), is one of the principal pests of tree fruits and nuts across northern and eastern Australia. Apart from visual damage assessment, there are currently no reliable methods for monitoring bug activity to aid management decisions. An attractant pheromone for this species that could be used as a trap lure could potentially fill this void. Earlier, two male-specific compounds were identified in airborne extracts from A. lutescens lutescens, (E,E)-α-farnesene and (R,E)-nerolidol; an unknown compound with a molecular weight 220 was also detected. We now report the identification of this hitherto unknown compound as (R,E,E)-α-farnesene-10,11-oxide. Synthesis of this epoxide was conducted using a regioselective asymmetric dihydroxylation of a sulfolene. A blend mimicking the natural proportions of (E,E)-α-farnesene, (R,E)-nerolidol, and (R,E,E)-α-farnesene-10,11- oxide attracted male and female A. lutescens lutescens as well as nymphs in the field, verifying that the aggregation pheromone comprises or is contained within this group of compounds. Copyright © 2012 Ashot Khrimian et al.
Resumo:
Phosphine is the only economically viable fumigant for routine control of insect pests of stored food products, but its continued use is now threatened by the world-wide emergence of high-level resistance in key pest species. Phosphine has a unique mode of action relative to well-characterised contact pesticides. Similarly, the selective pressures that lead to resistance against field sprays differ dramatically from those encountered during fumigation. The consequences of these differences have not been investigated adequately. We determine the genetic basis of phosphine resistance in Rhyzopertha dominica strains collected from New South Wales and South Australia and compare this with resistance in a previously characterised strain from Queensland. The resistance levels range from 225 and 100 times the baseline response of a sensitive reference strain. Moreover, molecular and phenotypic data indicate that high-level resistance was derived independently in each of the three widely separated geographical regions. Despite the independent origins, resistance was due to two interacting genes in each instance. Furthermore, complementation analysis reveals that all three strains contain an incompletely recessive resistance allele of the autosomal rph1 resistance gene. This is particularly noteworthy as a resistance allele at rph1 was previously proposed to be a necessary first step in the evolution of high-level resistance. Despite the capacity of phosphine to disrupt a wide range of enzymes and biological processes, it is remarkable that the initial step in the selection of resistance is so similar in isolated outbreaks.
Resumo:
Carpintero and Dellap, (Hemiptera: Thaumastocoridae) is a native Australian sap-feeding insect that has become invasive and seriously damaging to commercially grown in the Southern Hemisphere. Lin and Huber (Hymenoptera: Mymaridae) was recently discovered as an egg parasitoid of the Thaumastocoridae in Australia. Mitochondrial DNA (mtDNA; cytochrome oxidase subunit I, COI) sequence diversity amongst 104 individuals from these native populations revealed 24 sequence haplotypes. The COI haplotypes of individuals collected from the Sydney and Southeast Queensland clustered in distinct groups, indicating limited spread of the insect between the regions. Individuals collected from Perth in Western Australia were represented by four COI haplotypes. Although this population is geographically more isolated from other populations, two COI haplotypes were identical to haplotypes found in the Sydney region. The results suggest that has recently been introduced into Perth, possibly from the Sydney area. The high mtDNA diversity and limited spread that is suggested for is in contrast to the lack of geographic associated mtDNA diversity and extensive spread of . If implemented as a biological control agent, this factor will need to be considered in collecting and releasing .
Resumo:
Variation in the reaction of cereal cultivars to crown rot caused by Fusarium spp., in particular Fusarium pseudograminearum, was identified over 50 yrs ago, however the parameters and pathways of infection by F. pseudograminearum remain poorly understood. Seedlings of wheat, barley and oat genotypes that differ in susceptibility to crown rot were inoculated with a mixture of F. pseudograminearum isolates. Seedlings were harvested from 7 to 42 days after inoculation and expanded plant parts were rated for severity of visible disease symptoms. Individual leaf sheaths were placed onto nutrient media and fungal colonies emerging from the leaf sheathes were counted to estimate the degree of fungal spread within the host tissue. Significant differences in both the timing and the severity of disease symptoms were observed in the leaf sheath tissues of different host genotypes. Across all genotypes and plant parts examined, the development of visible symptoms closely correlated with the spread of the fungus into that tissue. The degree of infection of the coleoptile and sub-crown internode varied between genotypes, but was unrelated to the putative resistance of the host. In contrast leaf sheath tissues of the susceptible barley cv. Tallon and bread wheat cv. Puseas scored higher disease ratings and consistently showed faster, earlier spread of the fungus into younger tissues than infections of the oat cv. Cleanleaf or the wheat lines 2-49 and CPI 133814. While initial infections usually spread upwards from near the base of the first leaf sheath, the pathogen did not appear to invade younger leaf sheaths only from the base, but rather spread laterally across from older leaf sheaths into younger, subtended leaf sheaths, particularly as disease progressed. Early in the infection of each leaf sheath, disease symptoms in the partially resistant genotypes were less severe than in susceptible genotypes, however as infected leaf sheaths aged, differences between genotypes lessened as disease symptoms approached maximum values. Hence, while visual scoring of disease symptoms on leaf sheaths is a reliable comparative measure of the degree of fungal infection, differences between genotypes in the development of disease symptoms are more reliably assessed using the most recently expanded leaf sheaths.
Resumo:
In this proof-of-concept study, an agricultural biocide (imidacloprid) was effectively loaded into the mesoporous silica nanoparticles (MSNs) with different pore sizes, morphologies and mesoporous structures for termite control. This resulted in nanoparticles with a large surface area, tunable pore diameter and small particle size, which are ideal carriers for adsorption and controlled release of imidacloprid. The effect of pore size, surface area and mesoporous structure on uptake and release of imidacloprid was systematically studied. It was found that the adsorption amount and release profile of imidacloprid were dependent on the type of mesoporous structure and surface area of particles. Specifically, MCM-48 type mesoporous silica nanoparticles with a three dimensional (3D) open network structure and high surface area displayed the highest adsorption capacity compared to other types of silica nanoparticles. Release of imidacloprid from these nanoparticles was found to be controlled over 48 hours. Finally, in vivo laboratory testing on termite control proved the efficacy of these nanoparticles as delivery carriers for biopesticides. We believe that the present study will contribute to the design of more effective controlled and targeted delivery for other biomolecules.
Resumo:
This research aimed to develop and evaluate pre- and postharvest management strategies to reduce stem end rot (SER) incidence and extend saleable life of 'Carabao' mango fruits in Southern Philippines. Preharvest management focused on the development and improvement of fungicide spray program, while postharvest management aimed to develop alternative interventions aside from hot water treatment (HWT). Field evaluation of systemic fungicides, namely azoxystrobin ( Amistar 25SC), tebuconazole ( Folicur 25WP), carbendazim ( Goldazim 500SC), difenoconazole ( Score 250SC) and azoxystrobin+difenoconazole ( Amistar Top), reduced blossom blight severity and improved fruit setting and retention, resulting in higher fruit yield but failed to sufficiently suppress SER incidence. Based on these findings, an improved fungicide spray program was developed taking into account the infection process of SER pathogens and fungicide resistance. Timely application of protectant (mancozeb) and systemic fungicides (azoxystrobin, carbendazim and difenoconazole) during the most critical stages of mango flower and fruit development ensured higher harvestable fruit yield and minimally lowered SER incidence. Control of SER was also achieved by employing postharvest treatment such as HWT (52-55°C for 10 min), which significantly prolonged the saleable life of mango fruits. However, extended hot water treatment (EHWT; 46°C pulp temperature for 15 min), rapid heat treatment (RHT; 59°C for 30-60 sec), fungicide dip and promising biological control agents failed to satisfactorily reduce SER and prolong saleable life. In contrast, the integration of the improved spray program as preharvest management practice, and postharvest treatments such as HWT and fungicide dips (azoxystrobin, 150-175 ppm; carbendazim, 312.5 ppm; and tebuconazole, 125-156 ppm), significantly reduced disease and extended marketable life for utmost 8 days.
Resumo:
The spot or strip application of poisoned protein bait is a lure-and-kill technique used for the management of fruit flies. Knowledge of where flies occur in the crop environment is an important part of maximizing the efficacy of this tool. Bactrocera tryoni is a polyphagous pest of horticulture for which very little is known about its distribution within crops. With particular reference to edge effects, we monitored the abundance of B. tryoni in two crops of different architecture; strawberry and apple. In strawberries, we found more flies on the crop edge early in the fruiting season, which lessened gradually and eventually disappeared as the season progressed. In apple orchards, no such edge effect was observed and flies were found equally throughout the orchard. We postulated these differences may be due to differences in crop height (high vs. short) and/or crop canopy architecture (opened and branched in apple, dense and closed in strawberry). In a field cage trial, we tested these predictions using artificial plants of different height and canopy condition. Height and canopy structure type had no significant effects on fly oviposition and protein feeding, but the ‘apple’ type canopy significantly influenced resting. We thus postulate that there was an edge effect in strawberry because the crop was not providing resting sites and flies were doing so in vegetation around the field margins. The finding that B. tryoni shows different resting site preferences based on plant architecture offers the potential for strategic manipulation of the fly through specific border or inter-row plantings.
Resumo:
Background Next-generation sequencing technology is an important tool for the rapid, genome-wide identification of genetic variations. However, it is difficult to resolve the ‘signal’ of variations of interest and the ‘noise’ of stochastic sequencing and bioinformatic errors in the large datasets that are generated. We report a simple approach to identify regional linkage to a trait that requires only two pools of DNA to be sequenced from progeny of a defined genetic cross (i.e. bulk segregant analysis) at low coverage (<10×) and without parentage assignment of individual SNPs. The analysis relies on regional averaging of pooled SNP frequencies to rapidly scan polymorphisms across the genome for differential regional homozygosity, which is then displayed graphically. Results Progeny from defined genetic crosses of Tribolium castaneum (F4 and F19) segregating for the phosphine resistance trait were exposed to phosphine to select for the resistance trait while the remainders were left unexposed. Next generation sequencing was then carried out on the genomic DNA from each pool of selected and unselected insects from each generation. The reads were mapped against the annotated T. castaneum genome from NCBI (v3.0) and analysed for SNP variations. Since it is difficult to accurately call individual SNP frequencies when the depth of sequence coverage is low, variant frequencies were averaged across larger regions. Results from regional SNP frequency averaging identified two loci, tc_rph1 on chromosome 8 and tc_rph2 on chromosome 9, which together are responsible for high level resistance. Identification of the two loci was possible with only 5-7× average coverage of the genome per dataset. These loci were subsequently confirmed by direct SNP marker analysis and fine-scale mapping. Individually, homozygosity of tc_rph1 or tc_rph2 results in only weak resistance to phosphine (estimated at up to 1.5-2.5× and 3-5× respectively), whereas in combination they interact synergistically to provide a high-level resistance >200×. The tc_rph2 resistance allele resulted in a significant fitness cost relative to the wild type allele in unselected beetles over eighteen generations. Conclusion We have validated the technique of linkage mapping by low-coverage sequencing of progeny from a simple genetic cross. The approach relied on regional averaging of SNP frequencies and was used to successfully identify candidate gene loci for phosphine resistance in T. castaneum. This is a relatively simple and rapid approach to identifying genomic regions associated with traits in defined genetic crosses that does not require any specialised statistical analysis.
Resumo:
The exotic rust pathogen Puccinia psidii is now widespread along the east coast of Australia from temperate Victoria to tropical far north Queensland, with a current host range exceeding 200 species from 37 myrtaceous genera. To determine the threat P. psidii poses to plantation and native eucalypts, artificial inoculation was used to screen germplasm of spotted gum (Corymbia spp.) for resistance to the biotype of P. psidii that has become established in Australia. The objective was to characterize resistance to P. psidii within the Corymbia species complex so that management strategies for the deployment of germplasm from existing breeding programmes of these spotted gum species could be developed. Symptom development initiated 7 days after inoculation, with resistant and susceptible seedlings identified within all species, provenances and families. Inter- and intraspecific variability in rust resistance was observed among spotted gum species. There was no apparent relationship between climatic conditions at the provenance origin and disease resistance. The heritability estimates for all assessments are moderate to high and indicate a significant level of additive genetic variance for rust resistance within the populations. The results of this study clearly identify potential to select for resistance at the family level within the tested populations. While the potential for P. psidii to detrimentally impact upon Corymbia in the nursery and in young plantations was demonstrated, estimations of the heritability of resistance suggest that efforts to enhance this trait through breeding have reasonable prospects for success.