223 resultados para Host plant
Resumo:
Genetic and physiological studies often comprise genotypes diverse in vigour, size and flowering time. This can make the phenotyping of complex traits challenging, particularly those associated with canopy development, biomass and yield, as the environment of one genotype can be influenced by a neighbouring genotype. Limited seed and space may encourage field assessment in single, spaced rows or in small, unbordered plots, whereas the convenience of a controlled environment or greenhouse makes pot studies tempting. However, the relevance of such growing conditions to commercial field-grown crops is unclear and often doubtful. Competition for water, light and nutrients necessary for canopy growth will be variable where immediate neighbours are genetically different, particularly under stress conditions, where competition for resources and influence on productivity is greatest. Small hills and rod-rows maximise the potential for intergenotypic competition that is not relevant to a crop’s performance in monocultures. Response to resource availability will typically vary among diverse genotypes to alter genotype ranking and reduce heritability for all growth-related traits, with the possible exception of harvest index. Validation of pot experiments to performance in canopies in the field is essential, whereas the planting of multirow plots and the simple exclusion of plot borders at harvest will increase experimental precision and confidence in genotype performance in target environments.
Resumo:
Anthracnose and stem end rots are the main postharvest diseases affecting mangoes in Australia and limiting the shelf life of fruits whenever they are not controlled. The management of these diseases has often relied on the use of fungicide applications either as field spray treatments, postharvest dips or both. Because of concerns with continuous fungicide use, other options for the sustainable management of these diseases are needed. Field trials were conducted to assess the efficacy of three plant activators for the control of these diseases over a 2-year period on 20-year old ‘R2E2’ mango trees in north Queensland. The activators evaluated were: Bion, Kasil and Mangocote. The efficacy of these activators was compared with that of a standard industry field spray program using a combination of fungicides, as well as to un¬treated controls. Conditions favoured good development of the target diseases in both years to be able to differentiate treatment effects. Kasil as a drench was as effective as the standard fungicide program on the management of anthracnose and stem end rots. Bion as foliar sprays showed similar efficacy with its effectiveness comparable with the standard spray program. Both activators had significantly less disease incidences when compared with the untreated control. The third activator, Mangocote was not very effective in controlling the target diseases. Its effect was not significantly better than the untreated controls. The results from this 2-year study suggest that plant activators can play an effective role in mango postharvest disease management. Proper timing could reduce the number of fungicide sprays in an integrated disease management program enabling sustainable yields of quality fruits without the continuous concerns of health and environmental risks from continuous reliance on fungicide use.
Resumo:
Cotton bunchy top virus (CBTV) and the related Cotton leafroll dwarf virus (CLRDV) have caused sporadic disease outbreaks in most cotton regions of the world. Until recently, little was known about the diversity of CBTV or its natural host range. Seven natural field hosts and one experimental host of CBTV have now been identified. These include cotton, Malva parviflora (Marshmallow weed), Abutilon theophrasti (Velvetleaf), Anoda cristata (Spurred anoda), Hibiscus sabdariffa (Rosella), Sida rhombifolia (Paddy’s lucerne), Chamaesyce hirta (Asthma plant) and Gossypium australe. These are currently the only eight known hosts of CBTV. However the virus may have a wider host range than originally thought and include further non-Malvaceae species like asthma plant (family Euphorbiaceae). There are two distinct strains of CBTV in Australia, -A and -B, which have been detected in cotton from numerous locations across almost all growing regions. From 105 samples of cotton that have been positive for CBTV, 6 were infections of strain A only, 60 were strain B only and 64 were a mixed infection of strains A and B. These results indicate the symptoms of cotton bunchy top disease are closely associated with the presence of strain CBTV-B. A diagnostic assay for Cotton leafroll dwarf virus (CLRDV - cotton blue disease) is being developed and applied successfully for the detection of CLRDV samples from Brazil and Thailand. This is the first confirmation of CLRDV from SE-Asia, which may pose an increased biosecurity threat to the Australian industry.
Resumo:
Efficient and reliable diagnostic tools for the routine indexing and certification of clean propagating material are essential for the management of pospiviroid diseases in horticultural crops. This study describes the development of a true multiplexed diagnostic method for the detection and identification of all nine currently recognized pospiviroid species in one assay using Luminex bead-based suspension array technology. In addition, a new data-driven, statistical method is presented for establishing thresholds for positivity for individual assays within multiplexed arrays. When applied to the multiplexed array data generated in this study, the new method was shown to have better control of false positives and false negative results than two other commonly used approaches for setting thresholds. The 11-plex Luminex MagPlex-TAG pospiviroid array described here has a unique hierarchical assay design, incorporating a near-universal assay in addition to nine species-specific assays, and a co-amplified plant internal control assay for quality assurance purposes. All assays of the multiplexed array were shown to be 100% specific, sensitive and reproducible. The multiplexed array described herein is robust, easy to use, displays unambiguous results and has strong potential for use in routine pospiviroid indexing to improve disease management strategies.
Resumo:
Ambrosia beetle fungiculture represents one of the most ecologically and evolutionarily successful symbioses, as evidenced by the 11 independent origins and 3500 species of ambrosia beetles. Here we document the evolution of a clade within Fusarium associated with ambrosia beetles in the genus Euwallacea (Coleoptera: Scolytinae). Ambrosia Fusarium Clade (AFC) symbionts are unusual in that some are plant pathogens that cause significant damage in naive natural and cultivated ecosystems, and currently threaten avocado production in the United States, Israel and Australia. Most AFC fusaria produce unusual clavate macroconidia that serve as a putative food source for their insect mutualists. AFC symbionts were abundant in the heads of four Euwallacea spp., which suggests that they are transported within and from the natal gallery in mandibular mycangia. In a four-locus phylogenetic analysis, the AFC was resolved in a strongly supported monophyletic group within the previously described Cade 3 of the Fusarium solani species complex (FSSC). Divergence-time estimates place the origin of the AFC in the early Miocene similar to 21.2 Mya, which coincides with the hypothesized adaptive radiation of the Xyleborini. Two strongly supported clades within the AFC (Clades A and B) were identified that include nine species lineages associated with ambrosia beetles, eight with Euwallacea spp. and one reportedly with Xyleborus ferrugineus, and two lineages with no known beetle association. More derived lineages within the AFC showed fixation of the clavate (club-shaped) macroconidial trait, while basal lineages showed a mix of clavate and more typical fusiform macroconidia. AFC lineages consisted mostly of genetically identical individuals associated with specific insect hosts in defined geographic locations, with at least three interspecific hybridization events inferred based on discordant placement in individual gene genealogies and detection of recombinant loci. Overall, these data are consistent with a strong evolutionary trend toward obligate symbiosis coupled with secondary contact and interspecific hybridization. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Endoraecium (Raveneliaceae, Pucciniales) is a genus of rust that infects several species of Acacia (Fabaceae) in Australia, south-east Asia and Hawaii. Thirteen species of Endoraecium have been described, including seven species that are endemic to Australia, one species to south-east Asia and five to Hawaii. This study investigated the systematics of Endoraecium from 50 specimens in Australia and south-east Asia with a combined morphological and molecular approach. Phylogenetic analyses were conducted on combined datasets of the SSU, ITS and LSU regions of rDNA. The recovered phylogeny (i) supported a recent division of Endoraecium digitatum into five separate species based on morphology and host specificity and (ii) found lineages that did not correspond with known species.
Resumo:
Options for the integrated management of white blister (caused by Albugo candida) of Brassica crops include the use of well timed overhead irrigation, resistant cultivars, programs of weekly fungicide sprays or strategic fungicide applications based on the disease risk prediction model, Brassica(spot)(TM). Initial systematic surveys of radish producers near Melbourne, Victoria, indicated that crops irrigated overhead in the morning (0800-1200 h) had a lower incidence of white blister than those irrigated overhead in the evening (2000-2400 h). A field trial was conducted from July to November 2008 on a broccoli crop located west of Melbourne to determine the efficacy and economics of different practices used for white blister control, modifying irrigation timing, growing a resistant cultivar and timing spray applications based on Brassica(spot)(TM). Growing the resistant cultivar, 'Tyson', instead of the susceptible cultivar, 'Ironman', reduced disease incidence on broccoli heads by 99 %. Overhead irrigation at 0400 h instead of 2000 h reduced disease incidence by 58 %. A weekly spray program or a spray regime based on either of two versions of the Brassica(spot)(TM) model provided similar disease control and reduced disease incidence by 72 to 83 %. However, use of the Brassica(spot)(TM) models greatly reduced the number of sprays required for control from 14 to one or two. An economic analysis showed that growing the more resistant cultivar increased farm profit per ha by 12 %, choosing morning irrigation by 3 % and using the disease risk predictive models compared with weekly sprays by 15 %. The disease risk predictive models were 4 % more profitable than the unsprayed control.
Resumo:
The occurrence of interstitial species in Astrebla grasslands in Australia are influenced by grazing and seasonal rainfall but the interactions of these two influences are complex. This paper describes three studies aimed at determining and explaining the changes in plant species richness and abundance of the interstitial species in a long-term sheep utilisation experiment in an Astrebla grassland in northern Queensland. In the first study, increasing utilisation increased the frequency of Dactyloctenium radulans (Button grass) and Brachyachne convergens (Downs couch) and reduced that of Streptoglossa adscendens (Mint bush). In the second study, seasonal rainfall variation between 1984 and 2009 resulted in large annual differences in the size of the seed banks of many species, but increasing utilisation consistently reduced the seed bank of species such as Astrebla spp. and S. adscendens and increased that of species such as B. convergens, D. radulans, Amaranthus mitchellii (Boggabri) and Boerhavia sp. (Tar vine). In the third study, the highest species richness occurred at the lightest utilisation because of the presence of a range of palatable forbs, especially legumes. Species richness was reduced as utilisation increased. Species richness in the grazing exclosure was low and similar to that at the heaviest utilisation where there was a reduction in the presence of palatable forb species. The pattern of highest species richness at the lightest grazing treatment was maintained across three sampling times, even with different amounts of seasonal rainfall, but there was a large yearly variation in both the density and frequency of many species. It was concluded that the maintenance of highest species richness at the lightest utilisation was not aligned with other data from this grazing experiment which indicated that the maximum sustainable wool production occurred at moderate utilisation.
Resumo:
The use of maize simulation models to determine the optimum plant population for rainfed environments allows the evaluation of plant populations over multiple years and locations at a lower cost than traditional field experimentation. However the APSIM maize model that has been used to conduct some of these 'virtual' experiments assumes that the maximum rate of soil water extraction by the crop root system is constant across plant populations. This untested assumption may cause grain yield to be overestimated in lower plant populations. A field experiment was conducted to determine whether maximum rates of water extraction vary with plant population, and the maximum rate of soil water extraction was estimated for three plant populations (2.4, 3.5 and 5.5 plants m(-2)) under water limited conditions. Maximum soil water extraction rates in the field experiment decreased linearly with plant population, and no difference was detected between plant populations for the crop lower limit of soil water extraction. Re-analysis of previous maize simulation experiments demonstrated that the use of inappropriately high extraction-rate parameters at low plant populations inflated predictions of grain yield, and could cause erroneous recommendations to be made for plant population. The results demonstrate the importance of validating crop simulation models across the range of intended treatments. (C) 2013 Elsevier E.V. All rights reserved.
Resumo:
A specimen of downy mildew on leaves of Sphagneticola trilobata found in northern Queensland was identified by a systematic approach as a novel species of Plasmopara. A new species, Plasmopara sphagneticolae, is proposed for this specimen, which differs from other species of Plasmopara by morphology, host range, and sequence data from nuclear-ribosomal DNA and mitochondrial DNA. Plasmopara sphagneticolae, together with P. halstedii, are downy mildews found on host species in the tribe Heliantheae (Asteraceae). Plasmopara halstedii causes downy mildew on Helianthus annuus, and is not present on sunflower in Australia. Phylogenetic analysis of the large subunit region of ribosomal DNA showed that P. sphagneticolae was sister to P. halstedii on sunflower.
Resumo:
This chapter provides an in-depth review of important diseases affecting avocado production throughout the world. The importance of understanding the interaction of plant pathogens with their avocado host in order for the development of disease management options is also discussed.
Resumo:
Seven Dactylopius tomentosus (Lamarck) biotypes were collected from a range of Cylindropuntia spp. in Mexico, South Africa and United States of America (USA) and imported into quarantine facilities at the Ecosciences Precinct. Host range trials were conducted for each biotype and further assessed against the Cylindropuntia species that are naturalised in Australia to determine the most effective biotype for each species. Host range was confined to the Cylindropuntia for all seven biotypes. In the efficacy trials, C. imbricata (Haw.) F.M.Knuth was killed by the ‘imbricata’ biotype within 16 weeks and C. kleiniae (DC.) F.M.Knuth died within 26 weeks. Cylindropuntia fulgida var. mamillata (DC.) Backeb. and C. imbricata were killed by the ‘fulgida’ biotype within 18 weeks. On-going trials suggest that C. rosea (DC.) Backeb. could be controlled by either the ‘acanthocarpa’ or the ‘acanthocarpa × echinocarpa’ biotypes. Cylindropuntia spinosior (Englem.) F.M.Knuth was not susceptible to any of the D. tomentosus biotypes assessed. A clear designation of which D. tomentosus biotype is most suited for each Cylindropuntia species will improve and increase the effectiveness of biological control of these weed species
Resumo:
Cascabela thevetia (L.) Lippold (Apocynaceae) is an invasive woody weed that has formed large infestations at several locations in northern Australia. Understanding the reproductive biology of C. thevetia is vital to its management. This paper reports results of a shade house experiment that determined the effects of light conditions (100% or 30% of natural light) and plant densities (one, two, four or eight plants per plot) on the growth, time to flowering and seed formation, and monthly pod production of two C. thevetia biotypes (peach and yellow). Shaded plants were significantly larger when they reached reproductive maturity than plants grown under natural light. However, plants grown under natural light flowered earlier (268 days compared with 369 days) and produced 488 more pods per pot (a 5-fold increase) over 3 years. The yellow biotype was slightly taller at reproductive maturity but significantly taller and with significantly greater aboveground biomass at the end of the study. Both biotypes flowered at a similar time under natural light and low plant densities but the yellow biotype was quicker to seed (478 versus 498 days), produced significantly more pods (364 versus 203 pods) and more shoot growth (577 g versus 550 g) than the peach biotype over 3 years. Higher densities of C. thevetia tended to significantly reduce the shoot and root growth by 981 g and 714 g per plant across all light conditions and biotypes over 3 years and increase the time taken to flower by 140 days and produce seeds by 184 days. For land managers trying to prevent establishment of C. thevetia or to control seedling regrowth once initial infestations have been treated, this study indicates that young plants have the potential to flower and produce seeds within 268 and 353 days, respectively. However, with plant growth and reproduction most likely to be slower under field conditions, annual surveillance and control activities should be sufficient to find and treat plants before they produce seeds and replenish soil seed banks. The most at-risk part of the landscape may be open areas that receive maximum sunlight, particularly within riparian habitats where plants would consistently have more favourable soil moisture conditions.
Resumo:
Post-rainy sorghum (Sorghum bicolor (L.) Moench) production underpins the livelihood of millions in the semiarid tropics, where the crop is affected by drought. Drought scenarios have been classified and quantified using crop simulation. In this report, variation in traits that hypothetically contribute to drought adaptation (plant growth dynamics, canopy and root water conducting capacity, drought stress responses) were virtually introgressed into the most common post-rainy sorghum genotype, and the influence of these traits on plant growth, development, and grain and stover yield were simulated across different scenarios. Limited transpiration rates under high vapour pressure deficit had the highest positive effect on production, especially combined with enhanced water extraction capacity at the root level. Variability in leaf development (smaller canopy size, later plant vigour or increased leaf appearance rate) also increased grain yield under severe drought, although it caused a stover yield trade-off under milder stress. Although the leaf development response to soil drying varied, this trait had only a modest benefit on crop production across all stress scenarios. Closer dissection of the model outputs showed that under water limitation, grain yield was largely determined by the amount of water availability after anthesis, and this relationship became closer with stress severity. All traits investigated increased water availability after anthesis and caused a delay in leaf senescence and led to a ‘stay-green’ phenotype. In conclusion, we showed that breeding success remained highly probabilistic; maximum resilience and economic benefits depended on drought frequency. Maximum potential could be explored by specific combinations of traits.
Resumo:
Prickly acacia, Vachellia nilotica subsp. indica (syn. Acacia nilotica subsp. indica) (Fabaceae), a major weed in the natural grasslands of western Queensland, has been a target of biological control since the 1980s with limited success to date. Surveys in India, based on genetic and climate matching, identified five insects and two rust pathogens as potential agents. Host-specificity tests were conducted for the insects in India and under quarantine conditions in Australia, and for the rust pathogens under quarantine conditions at CABI in the UK. In no-choice tests, the brown leaf-webber, Phycita sp. A, (Lepidoptera: Pyralidae) completed development on 17 non-target plant species. Though the moth showed a clear preference for prickly acacia in oviposition choice trials screening of additional test-plant species was terminated in view of the potential non-target risk. The scale insect Anomalococcus indicus (Hemiptera: Lecanodiaspididae) developed into mature gravid females on 13 out of 58 non-target plant species tested. In the majority of cases very few female scales matured but development was comparable to that on prickly acacia on four of the non-target species. In multiple choice tests, the scale insect showed a significant preference for the target weed over non-target species tested. In a paired-choice trial under field conditions in India, crawler establishment occurred only on prickly acacia and not on the non-target species tested. Further choice trials are to be conducted under natural field conditions in India. A colony of the green leaf-webber Phycita sp. B has been established in quarantine facilities in Australia and host-specificity testing has commenced. The gall-rust Ravenelia acaciae-arabicae and the leaf-rust Ravenelia evansii (Puccineales: Raveneliaceae) both infected and produced viable urediniospores on Vachellia sutherlandii (Fabaceae), a non-target Australian native plant species. Hence, no further testing with the two rust species was pursued. Inoculation trials using the gall mite Aceria liopeltus (Acari: Eriophyidae) from V. nilotica subsp. kraussiana in South Africa resulted in no gall induction on V. nilotica subsp. indica. Future research will focus on the leaf-weevil Dereodus denticollis (Coleoptera: Curculionidae) and the leaf-beetle Pachnephorus sp. (Coleoptera: Chrysomelidae) under quarantine conditions in Australia. Native range surveys for additional potential biological control agents will also be pursued in northern and western Africa.