222 resultados para Curillosides G And H
Resumo:
ObjectivesTo compare the sensitivity of inspections of cattle herds and adult fly trapping for detection of the Old World screw-worm fly (OWS). ProceduresThe incidence of myiases on animals and the number of OWS trapped with LuciTrap (R)/Bezzilure were measured concurrently on cattle farms on Sumba Island (Indonesia) and in peninsular Malaysia (two separate periods for the latter). The numbers of animal inspections and traps required to achieve OWS detection at the prevalent fly densities were calculated. ResultsOn Sumba Island, with low-density OWS populations, the sensitivity of herd inspections and of trapping for OWS detection was 0.30 and 0.85, respectively. For 95% confidence of detecting OWS, either 45 inspections of 74 animals or trapping with 5 sets of 4 LuciTraps for 14 days are required. In Malaysia, at higher OWS density, herd inspections of 600 animals (twice weekly, period 1) or 1600 animals (weekly, period 2) always detected myiases (sensitivity = 1), while trapping had sensitivities of 0.89 and 0.64 during periods 1 and 2, respectively. For OWS detection with 95% confidence, fewer than 600 and 1600 animals or 2 and 6 LuciTraps are required in periods 1 and 2, respectively. ConclusionsInspections of cattle herds and trapping with LuciTrap and Bezzilure can detect OWS populations. As a preliminary guide for OWS detection in Australia, the numbers of animals and traps derived from the Sumba Island trial should be used because the prevailing conditions better match those of northern Australia.
Resumo:
The influence of grazing management on total soil organic carbon (SOC) and soil total nitrogen (TN) in tropical grasslands is an issue of considerable ecological and economic interest. Here we have used linear mixed models to investigate the effect of grazing management on stocks of SOC and TN in the top 0.5 m of the soil profile. The study site was a long-term pasture utilization experiment, 26 years after the experiment was established for sheep grazing on native Mitchell grass (Astrebla spp.) pasture in northern Australia. The pasture utilization rates were between 0% (exclosure) and 80%, assessed visually. We found that a significant amount of TN had been lost from the top 0.1 m of the soil profile as a result of grazing, with 80% pasture utilization resulting in a loss of 84 kg ha−1 over the 26-year period. There was no significant effect of pasture utilization rate on TN when greater soil depths were considered. There was no significant effect of pasture utilization rate on stocks of SOC and soil particulate organic carbon (POC), or the C:N ratio at any depth; however, visual trends in the data suggested some agreement with the literature, whereby increased grazing pressure appeared to: (i) decrease SOC and POC stocks; and, (ii) increase the C:N ratio. Overall, the statistical power of the study was limited, and future research would benefit from a more comprehensive sampling scheme. Previous studies at the site have found that a pasture utilization rate of 30% is sustainable for grazing production on Mitchell grass; however, given our results, we conclude that N inputs (possibly through management of native N2-fixing pasture legumes) should be made for long-term maintenance of soil health, and pasture productivity, within this ecosystem.
Resumo:
The shelf life of mangoes is limited by two main postharvest diseases when not consistently managed. These are anthracnose ( Colletotrichum gloeosporioides) and stem end rots (SER) ( Fusicoccum parvum). The management of these diseases has often relied mainly on the use of fungicides either as field spray treatments or as postharvest dips. These have done a fairly good job at serving the industry and allowing fruits to be transported, stored and sold at markets distant from the areas of production. There are however concerns on the continuous use of these fungicides as the main or only tool for the management of these diseases. This has necessitated a re-think of how these diseases could be sustainably managed into the future using a systems approach that focuses on integrated crop management. It is a holistic approach that considers all the crop protection management strategies including the genetics of the plant and its ability to naturally defend itself from infection with plant activators and growth regulators. It also considers other cultural or agronomic management tools such as the use of crop nutrition, timely application of irrigation water and the pruning of trees on a regular basis as a means of reducing inoculum levels in the orchards. The ultimate aim of this approach is to increase yields and obtain long term sustainable production. It is guided by the sustainable crop production principle which states that producers should apply as little inputs as possible but as much as needed.
Resumo:
An observational study was undertaken to measure odour and dust (PM10 and PM2.5) emission rates and identify non-methane volatile organic compounds (NMVOCs) and odorants in the exhaust air from two tunnel-ventilated layer-chicken sheds that were configured with multi-tiered cages and manure belts. The study sites were located in south-eastern Queensland and the West Gippsland region of Victoria, Australia. Samples were collected in summer and winter on sequential days across the manure-belt cleaning cycle. Odour emissions ranged from 58 to 512 ou/s per 1000 birds (0.03-0.27 ou/s.kg) and dust emission rates ranged 0.014-0.184 mg/s per 1000 birds for PM10 and 0.001-0.190 mg/s per 1000 birds for PM2.5. Twenty NMVOCs were identified, including three that were also identified as odorants using thermal desorption-gas chromatography-mass spectrometry/olfactometry analysis. Odour emission rates were observed to vary with the amount of manure accumulation on the manure belts, being lowest 2-4 days after removing manure. Odour emission rates were also observed to vary with diurnal and seasonal changes in ventilation rate. Dust emissions were observed to increase with ventilation rate but not with manure accumulation. Some NMVOCs were identified at both farms and in different seasons whereas others were observed only at one farm or in one season, indicating that odorant composition was influenced by farm-specific practices and season.
Resumo:
Ambrosia beetle fungiculture represents one of the most ecologically and evolutionarily successful symbioses, as evidenced by the 11 independent origins and 3500 species of ambrosia beetles. Here we document the evolution of a clade within Fusarium associated with ambrosia beetles in the genus Euwallacea (Coleoptera: Scolytinae). Ambrosia Fusarium Clade (AFC) symbionts are unusual in that some are plant pathogens that cause significant damage in naive natural and cultivated ecosystems, and currently threaten avocado production in the United States, Israel and Australia. Most AFC fusaria produce unusual clavate macroconidia that serve as a putative food source for their insect mutualists. AFC symbionts were abundant in the heads of four Euwallacea spp., which suggests that they are transported within and from the natal gallery in mandibular mycangia. In a four-locus phylogenetic analysis, the AFC was resolved in a strongly supported monophyletic group within the previously described Cade 3 of the Fusarium solani species complex (FSSC). Divergence-time estimates place the origin of the AFC in the early Miocene similar to 21.2 Mya, which coincides with the hypothesized adaptive radiation of the Xyleborini. Two strongly supported clades within the AFC (Clades A and B) were identified that include nine species lineages associated with ambrosia beetles, eight with Euwallacea spp. and one reportedly with Xyleborus ferrugineus, and two lineages with no known beetle association. More derived lineages within the AFC showed fixation of the clavate (club-shaped) macroconidial trait, while basal lineages showed a mix of clavate and more typical fusiform macroconidia. AFC lineages consisted mostly of genetically identical individuals associated with specific insect hosts in defined geographic locations, with at least three interspecific hybridization events inferred based on discordant placement in individual gene genealogies and detection of recombinant loci. Overall, these data are consistent with a strong evolutionary trend toward obligate symbiosis coupled with secondary contact and interspecific hybridization. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Pathogens and pests of stored grains move through complex dynamic networks linking fields, farms, and bulk storage facilities. Human transport and other forms of dispersal link the components of this network. A network model for pathogen and pest movement through stored grain systems is a first step toward new sampling and mitigation strategies that utilize information about the network structure. An understanding of network structure can be applied to identifying the key network components for pathogen or pest movement through the system. For example, it may be useful to identify a network node, such as a local grain storage facility, through which grain from a large number of fields will be accumulated and move through the network. This node may be particularly important for sampling and mitigation. In some cases more detailed information about network structure can identify key nodes that link two large sections of the network, such that management at the key nodes will greatly reduce the risk of spread between the two sections. In addition to the spread of particular species of pathogens and pests, we also evaluate the spread of problematic subpopulations, such as subpopulations with pesticide resistance. We present an analysis of stored grain pathogen and pest networks for Australia and the United States.
Resumo:
Climate projections over the next two to four decades indicate that most of Australia’s wheat-belt is likely to become warmer and drier. Here we used a shire scale, dynamic stress-index model that accounts for the impacts of rainfall and temperature on wheat yield, and a range of climate change projections from global circulation models to spatially estimate yield changes assuming no adaptation and no CO2 fertilisation effects. We modelled five scenarios, a baseline climate (climatology, 1901–2007), and two emission scenarios (“low” and “high” CO2) for two time horizons, namely 2020 and 2050. The potential benefits from CO2 fertilisation were analysed separately using a point level functional simulation model. Irrespective of the emissions scenario, the 2020 projection showed negligible changes in the modelled yield relative to baseline climate, both using the shire or functional point scale models. For the 2050-high emissions scenario, changes in modelled yield relative to the baseline ranged from −5 % to +6 % across most of Western Australia, parts of Victoria and southern New South Wales, and from −5 to −30 % in northern NSW, Queensland and the drier environments of Victoria, South Australia and in-land Western Australia. Taking into account CO2 fertilisation effects across a North–south transect through eastern Australia cancelled most of the yield reductions associated with increased temperatures and reduced rainfall by 2020, and attenuated the expected yield reductions by 2050.
Resumo:
Pasture rest is a possible strategy for improving land condition in the extensive grazing lands of northern Australia. If pastures currently in poor condition could be improved, then overall animal productivity and the sustainability of grazing could be increased. The scientific literature is examined to assess the strength of the experimental information to support and guide the use of pasture rest, and simulation modelling is undertaken to extend this information to a broader range of resting practices, growing conditions and initial pasture condition. From this, guidelines are developed that can be applied in the management of northern Australia’s grazing lands and also serve as hypotheses for further field experiments. The literature on pasture rest is diverse but there is a paucity of data from much of northern Australia as most experiments have been conducted in southern and central parts of Queensland. Despite this, the limited experimental information and the results from modelling were used to formulate the following guidelines. Rest during the growing season gives the most rapid improvement in the proportion of perennial grasses in pastures; rest during the dormant winter period is ineffective in increasing perennial grasses in a pasture but may have other benefits. Appropriate stocking rates are essential to gain the greatest benefit from rest: if stocking rates are too high, then pasture rest will not lead to improvement; if stocking rates are low, pastures will tend to improve without rest. The lower the initial percentage of perennial grasses, the more frequent the rests should be to give a major improvement within a reasonable management timeframe. Conditions during the growing season also have an impact on responses with the greatest improvement likely to be in years of good growing conditions. The duration and frequency of rest periods can be combined into a single value expressed as the proportion of time during which resting occurs; when this is done the modelling suggests the greater the proportion of time that a pasture is rested, the greater is the improvement but this needs to be tested experimentally. These guidelines should assist land managers to use pasture resting but the challenge remains to integrate pasture rest with other pasture and animal management practices at the whole-property scale.
Resumo:
Immediate and residual effects of two lengths of low plane of nutrition (PON) on the synthesis of milk protein and protein fractions were studied at the Mutdapilly Research Station, in south-east Queensland. Thirty-six multiparous Holstein-Friesian cows, between 46 and 102 days in milk (DIM) initially, were used in a completely randomised design experiment with three treatments. All cows were fed on a basal diet of ryegrass pasture (7.0 kg DM/cow.day), barley-sorghum concentrate mix (2.7 kg DM/cow.day) and a canola meal-mineral mix (1.3 kg DM/cow.day). To increase PON, 5.0 kg DM/cow.day supplemental maize and forage sorghum silage was added to the basal diet. The three treatments were (C) high PON (basal diet + supplemental silage); (L9) low PON (basal diet only) for a period of 9 weeks; and (L3) low PON (basal diet only) for a period of 3 weeks. The experiment comprised three periods (1) covariate – high PON, all groups (5 weeks), (2) period of low PON for either 3 weeks (L3) or 9 weeks (L9), and (3) period of high PON (all groups) to assess ability of cows to recover any production lost as a result of treatments (5 weeks). The low PON treatment periods for L3 and L9 were end-aligned so that all treatment groups began Period 3 together. Although there was a significant effect of L9 on yields of milk, protein, fat and lactose, and concentrations of true protein, whey protein and urea, these were not significantly different from L3. There were no residual effects of L3 or L9 on protein concentration or nitrogen distribution after 5 weeks of realimentation. There was no significant effect of low PON for 3 or 9 weeks on casein concentration or composition.
Resumo:
Cultures originally identified as Drechslera australiensis, from seeds of Chloris gayana in Japan, were the basis for Tsuda and Ueyama's new combination, Bipolaris australiensis, and its associated sexual morph Pseudocochliobolus australiensis. By studying ex-type materials of both Drechslera australiensis, which was originally isolated from seeds of Oryza sativa in Australia, and Pseudocochliobolus australiensis, we show by morphological and molecular phylogenetic analysis that these two specimens represent different species. Taxonomic confusion is resolved by the transfer of Pseudocochliobolus australiensis to Curvularia tsudae comb. nov. et nom. nov., together with a revised synonymy for Curvularia australiensis. © 2014 The Mycological Society of Japan.
Resumo:
Tension banding castration of cattle is gaining favour because it is relatively simple to perform and is promoted by retailers of the banders as a humane castration method. Two experiments were conducted, under tropical conditions using Bos indicus bulls comparing tension banding (Band) and surgical (Surgical) castration of weaner (7–10 months old) and mature (22–25 months old) bulls with and without pain management (NSAID (ketoprofen) or saline injected intramuscularly immediately prior to castration). Welfare outcomes were assessed using a range of measures; this paper reports on some physiological, morbidity and productivity-related responses to augment the behavioural responses reported in an accompanying paper. Blood samples were taken on the day of castration (day 0) at the time of restraint (0 min) and 30 min (weaners) or 40 min (mature bulls), 2 h, and 7 h; and days 1, 2, 3, 7, 14, 21 and 28 post-castration. Plasmas from day 0 were assayed for cortisol, creatine kinase, total protein and packed cell volume. Plasmas from the other samples were assayed for cortisol and haptoglobin (plus the 0 min sample). Liveweights were recorded approximately weekly to 6 weeks and at 2 and 3 months post-castration. Castration sites were checked at these same times to 2 months post-castration to score the extent of healing and presence of sepsis. Cortisol concentrations (mean ± s.e. nmol/L) were significantly (P < 0.05) higher in the Band (67 ± 4.5) compared with Surgical weaners (42 ± 4.5) at 2 h post-castration, but at 24 h post-castration were greater in the Surgical (43 ± 3.2) compared with the Band weaners (30 ± 3.2). The main effect of ketoprofen was on the cortisol concentrations of the mature Surgical bulls; concentrations were significantly reduced at 40 min (47 ± 7.2 vs. 71 ± 7.2 nmol/L for saline) and 2 h post-castration (24 ± 7.2, vs. 87 ± 7.2 nmol/L for saline). Ketoprofen, however, had no effect on the Band mature bulls, with their cortisol concentrations averaging 54 ± 5.1 nmol/L at 40 min and 92 ± 5.1 nmol/L at 2 h. Cortisol concentrations were also significantly elevated in the Band (83 ± 3.0 nmol/L) compared with Surgical mature bulls (57 ± 3.0 nmol/L) at weeks 2–4 post-castration. The timing of this elevation coincided with significantly elevated haptoglobin concentrations (mg/mL) in the Band bulls (2.97 ± 0.102 for mature bulls and 1.71 ± 0.025 for weaners, vs. 2.10 ± 0.102 and 1.45 ± 0.025 respectively for the Surgical treatment) and evidence of slow wound healing and sepsis in both the weaner (0.81 ± 0.089 not healed at week 4 for Band, 0.13 ± 0.078 for Surgical) and mature bulls (0.81 ± 0.090 at week 4 for Band, 0.38 ± 0.104 for Surgical). Overall, liveweight gains of both age groups were not affected by castration method. The findings of acute pain, chronic inflammation and possibly chronic pain in the mature bulls at least, together with poor wound healing in the Band bulls support behavioural findings reported in the accompanying paper and demonstrate that tension banding produces inferior welfare outcomes for weaner and mature bulls compared with surgical castration.
Resumo:
Tension-band castration of cattle is gaining favour because it is relatively simple to perform and is promoted by retailers of the devices as a humane castration method. Furthermore, retailers encourage delaying castration to exploit the superior growth rates of bulls compared with steers. Two experiments were conducted, under tropical conditions, comparing tension banding and surgical castration of weaner (7–10 months old) and mature (22–25 months old) Bos indicus bulls with and without pain management (ketoprofen or saline injected intramuscularly immediately prior to castration). Welfare outcomes were assessed using a wide range of measures; this paper reports on the behavioural responses of the bulls and an accompanying paper reports on other measures. Behavioural data were collected at intervals by direct observation and continuously via data loggers on the hind leg of the bulls to 4 weeks post-castration. Tension-banded bulls performed less movement in the crush/chute than the surgically castrated bulls during the procedures (weaner: 2.63 vs. 5.69, P < 0.001; mature: 1.00 vs. 5.94; P < 0.001 for tension-band and surgical castration, respectively), indicating that tension banding was less painful then surgical castration during conduct. To 1.5 h post-castration, tension-banded bulls performed significantly (all P < 0.05) more active behavioural responses indicative of pain compared with surgical castrates, e.g., percentage time walking forwards (weaner: 15.0% vs. 8.1%; mature: 22.3% vs. 15.1%), walking backwards (weaner: 4.3% vs. 1.4%; mature: 2.4% vs. 0.5%), numbers of tail movements (weaner: 21.9 vs. 1.4; mature: 51.5 vs. 39.4) and leg movements (weaner: 12.9 vs. 0.9; mature: 8.5 vs. 1.5), respectively. In contrast, surgically castrated bulls performed more immobile behaviours compared with tension-banded bulls (e.g., standing in mature bulls was 56.6% vs. 34.4%, respectively, P = 0.002). Ketoprofen administration appeared effective in moderating pain-related behaviours in the mature bulls from 1.5 to 3 h, e.g., reducing abnormal standing (0.0% vs. 7.7%, P = 0.009) and increasing feeding (12.7% vs. 0.0%, P = 0.048) in NSAID- and saline-treated bulls, respectively. There were few behavioural differences subsequent to 24 h post-castration, but some limited evidence of chronic pain (3–4 weeks post-castration) with both methods. Interpretation, however, was difficult from behaviours alone. Thus, tension banding is less painful than surgical castration during conduct of the procedures and pain-related behavioural responses differ with castration method (active restlessness in response to tension banding and minimisation of movement in response to surgical castration). Ketoprofen administered immediately prior to castration was somewhat effective in reducing pain, particularly in the mature bulls.
Resumo:
Cultures originally identified as Drechslera australiensis, from seeds of Chloris gayana in Japan, were the basis for Tsuda and Ueyama's new combination, Bipolaris australiensis, and its associated sexual morph Pseudocochliobolus australiensis. By studying ex-type materials of both Drechslera australiensis, which was originally isolated from seeds of Oryza sativa in Australia, and Pseudocochliobolus australiensis, we show by morphological and molecular phylogenetic analysis that these two specimens represent different species. Taxonomic confusion is resolved by the transfer of Pseudocochliobolus australiensis to Curvularia tsudae comb. nov. et nom. nov., together with a revised synonymy for Curvularia australiensis.