173 resultados para critical period for weed control
Resumo:
The paper describes the QC3 quarantine facility and supporting infrastructure which were purpose built for weed biological control at the Ecosciences Precinct. The quarantine is one of two new weed quarantine facilities in Australia and will service northern Australia. An account of the sharing philosophy between CSIRO and the Queensland Government and the necessity of working very closely with architects, project managers, builders and quarantine personnel is also given. This philosophy contributed to certification of the facility without any undue delays.
Resumo:
Conyza bonariensis is a major weed infesting zero-tilled cropping systems in subtropical Australia, particularly in wheat and winter fallows. Uncontrolled C.bonariensis survives to become a problem weed in the following crops or fallows. As no herbicide has been registered for C.bonariensis in wheat, the effectiveness of 11 herbicides, currently registered for other broad-leaved weeds in wheat, was evaluated in two pot and two field experiments. As previous research showed that the age of C.bonariensis, and to a lesser extent, the soil moisture at spraying affected herbicide efficacy, these factors also were investigated. The efficacy of the majority of herbicide treatments was reduced when large rosettes (5-15cm diameter) were treated, compared with small rosettes (<5cm diameter). However, for the majority of herbicide treatments, the soil moisture did not affect the herbicide efficacy in the pot experiments. In the field, a delay in herbicide treatment of 2 weeks reduced the herbicide efficacy consistently across herbicide treatments, which was related to weed age but not to soil moisture differences. Across all the experiments, four herbicides controlled C.bonariensis in wheat consistently (83-100%): 2,4-D; aminopyralid + fluroxypyr; picloram + MCPA + metsulfuron; and picloram + high rates of 2,4-D. Thus, this problem weed can be effectively and consistently controlled in wheat, particularly when small rosettes are treated, and therefore C.bonariensis will have a less adverse impact on the following fallow or crop.
Resumo:
Weed management practices in cotton systems that were based on frequent cultivation, residual herbicides, and some post-emergent herbicides have changed. The ability to use glyphosate as a knockdown before planting, in shielded sprayers, and now over-the-top in glyphosate-tolerant cotton has seen a significant reduction in the use of residual herbicides and cultivation. Glyphosate is now the dominant herbicide in both crop and fallow. This reliance increases the risk of shifts to glyphosate-tolerant species and the evolution of glyphosate-resistant weeds. Four surveys were undertaken in the 2008-09 and 2010-11 seasons. Surveys were conducted at the start of the summer cropping season (November-December) and at the end of the same season (March-April). Fifty fields previously surveyed in irrigated and non-irrigated cotton systems were re-surveyed. A major species shift towards Conyza bonariensis was observed. There was also a minor increase in the prevalence of Sonchus oleraceus. Several species were still present at the end of the season, indicating either poor control and/or late-season germinations. These included C. bonariensis, S. oleraceus, Hibiscus verdcourtii and Hibiscus tridactylites, Echinochloa colona, Convolvulus sp., Ipomea lonchophylla, Chamaesyce drummondii, Cullen sp., Amaranthus macrocarpus, and Chloris virgata. These species, with the exception of E. colona, H. verdcourtii, and H. tridactylites, have tolerance to glyphosate and therefore are likely candidates to either remain or increase in dominance in a glyphosate-based system.
Resumo:
Echinochloa colona is the most common grass weed of summer fallows in the grain-cropping systems of the subtropical region of Australia. Glyphosate is the most commonly used herbicide for summer grass control in fallows in this region. The world's first population of glyphosate-resistant E. colona was confirmed in Australia in 2007 and, since then, >70 populations have been confirmed to be resistant in the subtropical region. The efficacy of alternative herbicides on glyphosate-susceptible populations was evaluated in three field experiments and on both glyphosate-susceptible and glyphosate-resistant populations in two pot experiments. The treatments were knockdown and pre-emergence herbicides that were applied as a single application (alone or in a mixture) or as part of a sequential application to weeds at different growth stages. Glyphosate at 720 g ai ha−1 provided good control of small glyphosate-susceptible plants (pre- to early tillering), but was not always effective on larger susceptible plants. Paraquat was effective and the most reliable when applied at 500 g ai ha−1 on small plants, irrespective of the glyphosate resistance status. The sequential application of glyphosate followed by paraquat provided 96–100% control across all experiments, irrespective of the growth stage, and the addition of metolachlor and metolachlor + atrazine to glyphosate or paraquat significantly reduced subsequent emergence. Herbicide treatments have been identified that provide excellent control of small E. colona plants, irrespective of their glyphosate resistance status. These tactics of knockdown herbicides, sequential applications and pre-emergence herbicides should be incorporated into an integrated weed management strategy in order to greatly improve E. colona control, reduce seed production by the sprayed survivors and to minimize the risk of the further development of glyphosate resistance.
Resumo:
In this study, we used Parthenium hysterophorus and one of its biological control agents, the winter rust (Puccinia abrupta var. partheniicola) as a model system to investigate how the weed may respond to infection under a climate change scenario involving an elevated atmospheric CO2 (550 μmol mol−1) concentration. Under such a scenario, P. hysterophorus plants grew significantly taller (52%) and produced more biomass (55%) than under the ambient atmospheric CO2 concentration (380 μmol mol−1). Following winter rust infection, biomass production was reduced by 17% under the ambient and by 30% under the elevated atmospheric CO2 concentration. The production of branches and leaf area was significantly increased by 62% and 120%, under the elevated as compared with ambient CO2 concentration, but unaffected by rust infection under either condition. The photosynthesis and water use efficiency (WUE) of P. hysterophorus plants were increased by 94% and 400%, under the elevated as compared with the ambient atmospheric CO2 concentration. However, in the rust-infected plants, the photosynthesis and WUE decreased by 18% and 28%, respectively, under the elevated CO2 and were unaffected by the ambient atmospheric CO2 concentration. The results suggest that although P. hysterophorus will benefit from a future climate involving an elevation of the atmospheric CO2 concentration, it is also likely that the winter rust will perform more effectively as a biological control agent under these same conditions.
Resumo:
Sticky florestina (Florestina tripteris DC.) is an annual exotic weed that has become naturalised near the townships of Tambo and Barcaldine in central western Queensland, Australia. Three experiments conducted near Barcaldine identified foliar herbicides effective in killing sticky florestina plants and in providing residual activity to reduce recruitment from the soil seed bank. An initial chemical screening experiment evaluated the efficacy of 28 herbicide treatments. The most promising herbicides were then further evaluated in two response-rate experiments. Overall, 2,4-D/picloram, aminopyralid/fluroxypyr, clopyralid, metsulfuron-methyl and triclopyr/picloram proved to be the most effective selective herbicides. Two of these, metsulfuron-methyl at 18 g active ingredient (a.i) ha–1 and 2,4-D + picloram at 900 g a.i. ha–1 + 225 g a.i. ha–1 have now been included in a minor use permit (PER11920) with the Australian Pesticides and Veterinary Medicines Authority (APVMA) for the control of sticky florestina in pasture, stock route, roadside and non-crop situations using both spot and boom-spray applications (APVMA 2010). The permit also allows the use of 2,4-D amine for the control of seedlings only.
Resumo:
Top-predators contribute to ecosystem resilience, yet individuals or populations are often subject to lethal control to protect livestock, managed game or humans from predation. Such management actions sometimes attract concern that lethal control might affect top-predator function in ways ultimately detrimental to biodiversity conservation. The primary function of a predator is predation, which is often investigated by assessing their diet. We therefore use data on prey remains found in 4,298 Australian dingo scats systematically collected from three arid sites over a four year period to experimentally assess the effects of repeated broad-scale poison-baiting programs on dingo diet. Indices of dingo dietary diversity and similarity were either identical or near-identical in baited and adjacent unbaited treatment areas in each case, demonstrating no control-induced change to dingo diets. Associated studies on dingoes' movement behaviour and interactions with sympatric mesopredators were similarly unaffected by poison-baiting. These results indicate that mid-sized top-predators with flexible and generalist diets (such as dingoes) may be resilient to ongoing and moderate levels of population control without substantial alteration of their diets and other related aspects of their ecological function.
Resumo:
Cat’s claw creeper (Dolichandra unguis-cati (Bignoniaceae) is a serious environmental weed in Queensland and New South Wales. It presents a threat to riparian and rainforest ecosystems and is often found in inaccessible locations that are not suitable for chemical or physical control methods. This makes biological control an important tool for managing this weed. The jewel beetle Hylaeo¬gena jureceki was approved for release in Australia in May 2012. Since approval, approximately 35,000 insects have been released at 53 sites. Multiple and single releases have been made at sites with the number of insects released ranging from 20 to 1590. Post-release monitoring before and after winter found the beetle persisting at 73% of release sites in southeast Queensland. Within the release sites, the beetle appears to disperse widely, up to 100 m over a 15 month period. Based on these early field results, it appears that the beetle will establish and spread in Queensland and New South Wales. In addition to direct field releases, the beetle has been supplied to various community and Landcare groups for breeding and field release. This will hasten the spread of the insect to a wider area. It is expected that the jewel beetle will complement the leaf-sucking tingid (Carvalhotingis visenda) and leaf-tying moth (Hypocosmia pyrochroma) that were released in 2007.
Resumo:
Cat’s claw creeper vine, Dolichandra unguis-cati (L.) L.G.Lohmann (formerly known as Macfadyena unguis-cati (L.) A.H.Gentry), a Weed of National Significance (WoNS), is a structural woody parasite that is highly invasive along sensitive riparian corridors and native forests of coastal and inland eastern Australia. As part of evaluation of the impact of herbicide and mechanical/physical control techniques on the long-term reduction of biomass of the weed and expected return of native flora, we have set-up permanent vegetation plots in: (a) infested and now chemically/physically treated, (b) infested but untreated and (c) un-infested patches. The treatments were set up in both riparian and non-riparian habitats to document changes that occur in seed bank flora over a two-year post-treatment period. Response to treatment varied spatially and temporally. However, following chemical and physical removal treatments, treated patches exhibited lower seed bank abundance and diversity than infested and patches lacking the weed, but differences were not statistically significant. Thus it will be safe to say that spraying herbicides using the recommended rate does not undermine restoration efforts.
Resumo:
Species biology drives the frequency, duration and extent of survey and control activities in weed eradication programs. Researching the key biological characters can be difficult when plants occur at limited locations and are controlled immediately by field crews who are dedicated to preventing reproduction. Within the National Four Tropical Weeds Eradication Program and the former National Siam Weed Eradication Program, key information needed by the eradication teams has been obtained through a combination of field, glasshouse and laboratory studies without jeopardising the eradication objective. Information gained on seed longevity, age to reproductive maturity, dispersal and control options has been used to direct survey and control activities. Planned and opportunistic data collections will continue to provide biological information to refine eradication activities.
Resumo:
Top-predators can sometimes be important for structuring fauna assemblages in terrestrial ecosystems. Through a complex trophic cascade, the lethal control of top-predators has been predicted to elicit positive population responses from mesopredators that may in turn increase predation pressure on prey species of concern. In support of this hypothesis, many relevant research papers, opinion pieces and literature reviews identify three particular case studies as supporting evidence for top-predator control-induced release of mesopredators in Australia. However, many fundamental details essential for supporting this hypothesis are missing from these case studies, which were each designed to investigate alternative aims. Here, we re-evaluate the strength of evidence for top-predator control-induced mesopredator release from these three studies after comprehensive analyses of associated unpublished correlative and experimental data. Circumstantial evidence alluded to mesopredator releases of either the European Red Fox (Vulpes vulpes) or feral Cat (Felis catus) coinciding with Dingo (Canis lupus dingo) control in each case. Importantly, however, substantial limitations in predator population sampling techniques and/or experimental designs preclude strong assertions about the effect of lethal control on mesopredator populations from these studies. In all cases, multiple confounding factors and plausible alternative explanations for observed changes in predator populations exist. In accord with several critical reviews and a growing body of demonstrated experimental evidence on the subject, we conclude that there is an absence of reliable evidence for top-predator control-induced mesopredator release from these three case studies. Well-designed and executed studies are critical for investigating potential top-predator control-induced mesopredator release.
Resumo:
Australia has a very proud record of achievement in biological control of weeds and the underpinning science. From the earliest campaigns against prickly pear and lantana, weed biocontrol developed with major contributions from CSIRO and state governments to produce outstanding successes against weeds such as salvinia, rubber vine, Noogoora burr, bridal creeper and prickly pear. Maximum research activity occurred in the 1980s when some 30 scientists were working world wide on Australia’s weed problems. Activity declined gradually until the last few years when government divestment in agricultural research greatly diminished capacity. There are now approximately eight full-time scientist equivalents supporting Australia’s weed biocontrol effort. Australia may now need to adopt a team approach to tackle future major weed biological control projects.
Resumo:
Prickly acacia, Vachellia nilotica subsp. indica (syn. Acacia nilotica subsp. indica) (Fabaceae), a major weed in the natural grasslands of western Queensland, has been a target of biological control since the 1980s with limited success to date. Surveys in India, based on genetic and climate matching, identified five insects and two rust pathogens as potential agents. Host-specificity tests were conducted for the insects in India and under quarantine conditions in Australia, and for the rust pathogens under quarantine conditions at CABI in the UK. In no-choice tests, the brown leaf-webber, Phycita sp. A, (Lepidoptera: Pyralidae) completed development on 17 non-target plant species. Though the moth showed a clear preference for prickly acacia in oviposition choice trials screening of additional test-plant species was terminated in view of the potential non-target risk. The scale insect Anomalococcus indicus (Hemiptera: Lecanodiaspididae) developed into mature gravid females on 13 out of 58 non-target plant species tested. In the majority of cases very few female scales matured but development was comparable to that on prickly acacia on four of the non-target species. In multiple choice tests, the scale insect showed a significant preference for the target weed over non-target species tested. In a paired-choice trial under field conditions in India, crawler establishment occurred only on prickly acacia and not on the non-target species tested. Further choice trials are to be conducted under natural field conditions in India. A colony of the green leaf-webber Phycita sp. B has been established in quarantine facilities in Australia and host-specificity testing has commenced. The gall-rust Ravenelia acaciae-arabicae and the leaf-rust Ravenelia evansii (Puccineales: Raveneliaceae) both infected and produced viable urediniospores on Vachellia sutherlandii (Fabaceae), a non-target Australian native plant species. Hence, no further testing with the two rust species was pursued. Inoculation trials using the gall mite Aceria liopeltus (Acari: Eriophyidae) from V. nilotica subsp. kraussiana in South Africa resulted in no gall induction on V. nilotica subsp. indica. Future research will focus on the leaf-weevil Dereodus denticollis (Coleoptera: Curculionidae) and the leaf-beetle Pachnephorus sp. (Coleoptera: Chrysomelidae) under quarantine conditions in Australia. Native range surveys for additional potential biological control agents will also be pursued in northern and western Africa.
Resumo:
Bellyache bush (Jatropha gossypiifolia, Euphorbiaceae), a deciduous shrub introduced as an ornamental from tropical America, is a major and expanding weed of rangelands and riparian zones in northern Australia. Biological control is the most economically viable and long-term management solution for this weed. Surveys for potential biological control agents for J gossypiifolia in Mexico,Central America and the Caribbean resulted in release of the seed-feeding jewel bug Agonosoma trilineatum (Hemiptera: Scutelleridae), which failed to establish, and prioritisation of a leaf-rust Phakopsora arthuriana (Puccineales: Phakopsoraceae) for host-specificity testing, which is ongoing. With poor prospects for new agents from Mexico and Central America and the Caribbean, the search for candidate agents on J gossypiifolia shifted to localities south of the equator. Surveys were conducted on the purple-leaf form of J gossypiifolia, Jatropha excisa, Jatropha clavuligera and Jatropha curcas in Peru, Bolivia and Paraguay in 2012 and 2013. A total of 11 insect species, one mite species and the leaf-rust (P. arthuriana) were observed. These include a yet to be described leafmining moth (Stomphastis sp.) (Lepidoptera: Gracillaridae), a shoot and leaf-galling midge Prodiplosis longifila, and leaf-feeding midge Prodiplosis sp. near longifila (both Diptera:Cecidomyiidae) and an unidentified leaf-feeding moth larva (Lepidoptera: Notodontidae). The leafminer is widespread and damaging and has a field host range restricted to the genus Jatropha in Peru and Bolivia, holds the greatest promise as a biological control agent in Australia. Phakopsora arthuriana was recorded for the first time ever from Bolivia and Peru. Further exploration will be conducted in Peru and Bolivia during the wet season to confirm the field host range of collected agents,and to look for more new agents. Promising agents with field host-range restricted to Jatropha spp. will be imported into a quarantine facility in Australia for host-specificity testing.
Resumo:
Prickly acacia (Vachellia nilotica subsp. indica), a native of the Indian subcontinent, is a serious weed of the grazing areas of northern Australia and is a target for classical biological control. Native range surveys in India identified a leaf webber, Phycita sp. (Lepidoptera: Pyralidae) as a prospective biological control agent for prickly acacia. In this study, we report the life cycle and host-specificity test results Phycita sp. and highlight the contradictory results between the no-choice tests in India and Australia and the field host range in India. In no-choice tests in India and Australia, Phycita sp. completed development on two of 11 and 16 of 27 non-target test plant species, respectively. Although Phycita sp. fed and completed development on two non-target test plant species (Vachellia planifrons and V. leucophloea) in no-choice tests in India, there was no evidence of the insect on the two non-target test plant species in the field. Our contention is that oviposition behaviour could be the key mechanism in host selection of Phycita sp., resulting in its incidence only on prickly acacia in India. This is supported by paired oviposition choice tests involving three test plant species (Acacia baileyana, A. mearnsii and A. deanei) in quarantine in Australia, where eggs were laid only on prickly acacia. However, in paired oviposition choice trials, only few eggs were laid, making the results unreliable. Although oviposition choice tests suggest that prickly acacia is the most preferred and natural host, difficulties in conducting choice oviposition tests with fully grown trees under quarantine conditions in Australia and the logistic difficulties of conducting open-field tests with fully grown native Australian plants in India have led to rejection of Phycita sp. as a potential biological control agent for prickly acacia in Australia.