138 resultados para Antimicrobial resistance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project proposes to implement resistance gene pyramiding strategies through close collaboration with Pacific Seeds. These strategies have been developed by Department of Primary Industries and Fisheries (DPI&F) researchers in two previous GRDC projects, DAQ356 and DAQ537. The gene pyramids will be incorporated into elite breeding material using techniques and technologies developed by DPI&F. These include the use of DNA markers. If successful, a range of elite lines/commercial hybrids containing strategic resistance gene pyramids will be available to growers. These lines will provide the industry with a directed strategy to manage the sunflower rust pathogen and reduce the risk of outbreaks of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pratylenchus thornei is a root-lesion nematode (RLN) of economic significance in the grain growing regions of Australia. Chickpea (Cicer arietinum) is a significant legume crop grown throughout these regions, but previous testing found most cultivars were susceptible to P. thornei. Therefore, improved resistance to P. thornei is an important objective of the Australian chickpea breeding program. A glasshouse method was developed to assess resistance of chickpea lines to P. thornei, which requires relatively low labour and resource input, and hence is suited to routine adoption within a breeding program. Using this method, good differentiation of chickpea cultivars for P. thornei resistance was measured after 12 weeks. Nematode multiplication was higher for all genotypes than the unplanted control, but of the 47 cultivars and breeding lines tested, 17 exhibited partial resistance, allowing less than two fold multiplication. The relative differences in resistance identified using this method were highly heritable (0.69) and were validated against P. thornei data from seven field trials using a multi-environment trial analysis. Genetic correlations for cultivar resistance between the glasshouse and six of the field trials were high (>0.73). These results demonstrate that resistance to P. thornei in chickpea is highly heritable and can be effectively selected in a limited set of environments. The improved resistance found in a number of the newer chickpea cultivars tested shows that some advances have been made in the P. thornei resistance of Australian chickpea cultivars, and that further targeted breeding and selection should provide incremental improvements.