68 resultados para planting time
Resumo:
The root-lesion nematodes (RLN) Pratylenchus thornei and P. neglectus are widely distributed in Australian grain producing regions and can reduce the yield of intolerant wheat cultivars by up to 65 , costing the industry ~123 M AUD/year. Consequently, researchers in the northern, southern and western regions have independently developed procedures to evaluate the resistance of cereal cultivars to RLN. To compare results, each of the three laboratories phenotyped a set of 26 and 36 cereal cultivars for relative resistance/susceptibility to P. thornei and P. neglectus respectively. The northern and southern regions also investigated the effects of planting time and experiment duration on RLN reproduction and cultivar ranking. Results show the genetic correlation between cultivars tested using the northern and southern procedures evaluating P. thornei resistance was 0.93. Genetic correlations between experiments using the same procedure, but with different planting times, were 0.99 for both northern and southern procedures. The genetic correlation between cultivars tested using the northern, southern and western procedures evaluating P. neglectus resistance ranged from 0.71 to 0.95. Genetic correlations between experiments using the same procedure but with different planting times ranged from 0.91 to 0.99. This study established that, even though experiments were conducted in different geographic locations and with different trial management practices, the diverse nematode resistance screening procedures ranked cultivars similarly. Consequently, RLN resistance data can be pooled across regions to provide national consensus ratings of cultivars.
Resumo:
The effect of time of planting and plant size on the performance of ‘Festival’ and ‘Florida Fortuna’ strawberry (Fragaria ×ananassa) plants was studied at Nambour in southeastern Queensland, Australia, over 2 years. The main objective of the work was to determine whether small plants yielded proportionally less than large plants as planting was delayed. First, bare-rooted transplants of ‘Festival’ were divided into small (crown diameters ranging from 6 to 10 mm) or large plants (10 to 17 mm) and planted in late March, mid-April, or late April. Second, transplants of ‘Florida Fortuna’ were divided into small (5 to 8 mm) or large plants (8 to 17 mm) and planted in early April, mid-April, or early May. The early planting for each cultivar corresponded with the time that the transplants are first available from commercial strawberry nurseries. Yields were generally greater in plants planted in late March/early April compared with plants planted later. Differences in yield between the small and large plants were consistent across the different times of planting, with the small plants always having lower yields. Small transplants are an issue for the productivity of strawberry fields in this environment whether they are planted early or late. Producers should consider paying a premium for large transplants delivered early in the season.
Resumo:
Plant tissue culture has been used for a number of years to produce micropropagated strawberry plants for planting into runner growing beds in the Stanthorpe (Queensland) and Bothwell (Tasmania) regions. This process has allowed the rapid release of new cultivars from the LAWS (Late Autumn, Winter, Spring) breeding program into the current runner production system. Micro-propagation in vitro allows plants to be produced during the autumn and winter months, when mother plants would normally be in a fruit production phase in the field in Queensland. The plants produced are of a high health status when they are planted. The subsequent arrival and build up of various diseases in the runner fields are closely monitored. Using tissue culture for the first generation reduces the time the plants spend in the field by twelve months, reducing disease incidence. To date, any disease outbreak has been successfully managed using early detection and rapid response methods.
Resumo:
Crop models for herbaceous ornamental species typically include functions for temperature and photoperiod responses, but very few incorporate vernalization, which is a requirement of many traditional crops. This study investigated the development of floriculture crop models, which describe temperature responses, plus photoperiod or vernalization requirements, using Australian native ephemerals Brunonia australis and Calandrinia sp. A novel approach involved the use of a field crop modelling tool, DEVEL2. This optimization program estimates the parameters of selected functions within the development rate models using an iterative process that minimizes sum of squares residual between estimated and observed days for the phenological event. Parameter profiling and jack-knifing are included in DEVEL2 to remove bias from parameter estimates and introduce rigour into the parameter selection process. Development rate of B. australis from planting to first visible floral bud (VFB) was predicted using a multiplicative approach with a curvilinear function to describe temperature responses and a broken linear function to explain photoperiod responses. A similar model was used to describe the development rate of Calandrinia sp., except the photoperiod function was replaced with an exponential vernalization function, which explained a facultative cold requirement and included a coefficient for determining the vernalization ceiling temperature. Temperature was the main environmental factor influencing development rate for VFB to anthesis of both species and was predicted using a linear model. The phenology models for B. australis and Calandrinia sp. described development rate from planting to VFB and from VFB to anthesis in response to temperature and photoperiod or vernalization and may assist modelling efforts of other herbaceous ornamental plants. In addition to crop management, the vernalization function could be used to identify plant communities most at risk from predicted increases in temperature due to global warming.
Resumo:
In the seasonally dry tropics of northern Australia, breeder cows may lose up to 30% liveweight during the dry season when pasture is of low nutritive value. This is a major cause of low reproductive rates and high mortality. Weaning early in the dry season is effective to reduce this liveweight loss of the breeder (Holroyd et al. 1988). An experiment examined the dry season liveweight loss of breeders for a range of weaning times and levels of nutrition. From April to October through the dry season, 209 Bos indicus x Shorthorn cross cows 4-6 years of age grazed speargrass pastures in north Queensland. The cows had been joined with bulls from late January until April. Twenty-nine breeders had not suckled a calf during the previous wet season (DRY cows). In addition 180 cows lactating in April were weaned in late April, mid July or early September. The cows were allocated by stratified randomisation based on lactational status, stage of pregnancy and body condition to 15 x 40 ha paddocks. Five paddocks with low fertility soils provided LOW nutrition, while 10 paddocks with medium fertility soils and no supplementation or with supplementation provided MEDIUM and HIGH nutrition, respectively. The supplement consisted of molasses containing 14% urea offered ad libitum. Liveweight was measured at intervals and conceptus-free liveweight (CF-LW) calculated. Data were analyses by AOV within groups of paddocks. Animal production for a consuming world : proceedings of 9th Congress of the Asian-Australasian Association of Animal Production Societies [AAAP] and 23rd Biennial Conference of the Australian Society of Animal Production [ASAP] and 17th Annual Symposium of the University of Sydney, Dairy Research Foundation, [DRF]. 2-7 July 2000, Sydney, Australia.
Resumo:
The potential for large-scale use of a sensitive real time reverse transcription polymerase chain reaction (RT-PCR) assay was evaluated for the detection of Tomato spotted wilt virus (TSWV) in single and bulked leaf samples by comparing its sensitivity with that of DAS-ELISA. Using total RNA extracted with RNeasy® or leaf soak methods, real time RT-PCR detected TSWV in all infected samples collected from 16 horticultural crop species (including flowers, herbs and vegetables), two arable crop species, and four weed species by both assays. In samples in which DAS-ELISA had previously detected TSWV, real time RT-PCR was effective at detecting it in leaf tissues of all 22 plant species tested at a wide range of concentrations. Bulk samples required more robust and extensive extraction methods with real time RT-PCR, but it generally detected one infected sample in 1000 uninfected ones. By contrast, ELISA was less sensitive when used to test bulked samples, once detecting up to 1 infected in 800 samples with pepper but never detecting more than 1 infected in 200 samples in tomato and lettuce. It was also less reliable than real time RT-PCR when used to test samples from parts of the leaf where the virus concentration was low. The genetic variability among Australian isolates of TSWV was small. Direct sequencing of a 587 bp region of the nucleoprotein gene (S RNA) of 29 isolates from diverse crops and geographical locations yielded a maximum of only 4.3% nucleotide sequence difference. Phylogenetic analysis revealed no obvious groupings of isolates according to geographic origin or host species. TSWV isolates, that break TSWV resistance genes in tomato or pepper did not differ significantly in the N gene region studied, indicating that a different region of the virus genome is responsible for this trait.
Resumo:
Banana bunchy top virus (BBTV) was readily transmitted through tissue culture in banana (Mum sp.) cv. Lady finger (AAB) and Cavendish cv. Williams (AAA). Lines derived from infected and healthy field plants had similar in vitro multiplication rates. BBTV infected in vitro cultures displayed symptoms of stunting, leaf curling, chlorotic and green flecks, and poor root growth. Symptoms became milder with time, and were often difficult to discern in older, rapidly multiplying cultures. A triple antibody sandwich ELISA using polyclonal and monoclonal antibodies was very efficient for detecting BBTV in vitro. Symptomless, ELISA-negative plants arose in 10 out of 11 lines derived from BBTV-infected field plants and first appeared after 9 months continuous in vitro culture at a constant 28OC. Meristem tip culture or heat therapy was not used. These plants remained symptomless and ELISA-negative after planting out in the glasshouse (individual plants checked for up to 16 months). The implications of this inconsistent transmission of BBTV for germplasm indexing and exchange are discussed.
Resumo:
Equid herpesvirus 1 (EHV1) is a major disease of equids worldwide causing considerable losses to the horse industry. A variety of techniques, including PCR have been used to diagnose EHV1. Some of these PCRs were used in combination with other techniques such as restriction enzyme analysis (REA) or hybridisation, making them cumbersome for routine diagnostic testing and increasing the chances of cross-contamination. Furthermore, they involve the use of suspected carcinogens such as ethidium bromide and ultraviolet light. In this paper, we describe a real-time PCR, which uses minor groove-binding probe (MGB) technology for the diagnosis of EHV1. This technique does not require post-PCR manipulations thereby reducing the risk of cross-contamination. Most importantly, the technique is specific; it was able to differentiate EHV1 from the closely related member of the Alphaherpesvirinae, equid herpesvirus 4 (EHV4). It was not reactive with common opportunistic pathogens such as Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa and Enterobacter agglomerans often involved in abortion. Similarly, it did not react with equine pathogens such as Streptococcus equi, Streptococcus equisimilis, Streptococcus zooepidemicus, Taylorella equigenitalis and Rhodococcus equi, which also cause abortion. The results obtained with this technique agreed with results from published PCR methods. The assay was sensitive enough to detect EHV1 sequences in paraffin-embedded tissues and clinical samples. When compared to virus isolation, the test was more sensitive. This test will be useful for the routine diagnosis of EHV1 based on its specificity, sensitivity, ease of performance and rapidity.
Resumo:
A multiplex real-time PCR was designed to detect and differentiate equid herpesvirus 1 (EHV-1) and equid herpesvirus 4 (EHV-4). The PCR targets the glycoprotein B gene of EHV-1 and EHV-4. Primers and probes were specific to each equine herpesvirus type and can be used in monoplex or multiplex PCRs, allowing the differentiation of these two closely related members of the Alphaherpesvirinae. The two probes were minor-groove binding probes (MGB?) labelled with 6-carboxy-fluorescein (FAM?) and VIC® for detection of EHV-1 and EHV-4, respectively. Ten EHV-1 isolates, six EHV-1 positive clinical samples, one EHV-1 reference strain (EHV-1.438/77), three EHV-4 positive clinical samples, two EHV-4 isolates and one EHV-4 reference strain (EHV-4 405/76) were included in this study. EHV-1 isolates, clinical samples and the reference strain reacted in the EHV-1 real-time PCR but not in the EHV-4 real-time PCR and similarly EHV-4 clinical samples, isolates and the reference strain were positive in the EHV-4 real-time PCR but not in the EHV-1 real-time PCR. Other herpesviruses, such as EHV-2, EHV-3 and EHV-5 were all negative when tested using the multiplex real-time PCR. When bacterial pathogens and opportunistic pathogens were tested in the multiplex real-time PCR they did not react with either system. The multiplex PCR was shown to be sensitive and specific and is a useful tool for detection and differentiation of EHV-1 and EHV-4 in a single reaction. A comprehensive equine herpesvirus disease investigation procedure used in our laboratory is also outlined. This procedure describes the combination of alphaherpesvirus multiplex real-time PCR along with existing gel-based PCRs described by other authors.
Resumo:
'Goldfinger', a tetraploid banana produced from the Fundación Hondureña de Investigación Agrícola (FHIA) breeding program, was released to the Australian industry in 1995. It was promoted as an apple-flavoured dessert banana with resistance to Fusarium wilt race 1 and subtropical race 4, as well as resistance to black and yellow Sigatoka (Mycosphaerella fijiensis and M. musicola, respectively). This study was initiated to provide agronomic information to the banana industry, which was under threat from Fusarium wilt, on a new cultivar which could replace 'Williams' (AAA, Cavendish subgroup) or 'Lady Finger' (AAB, Pome subgroup) in those areas affected by Fusarium wilt. Also few studies had reported on the production characteristics of the new tetraploid hybrids, especially from subtropical areas, and therefore two field sites, one a steep-land farm and the other a level, more productive site, were selected for planting density and spatial arrangement treatments. The optimum density in terms of commercial production, taking into account bunch weight, finger size, length of the production cycle, plant height and ease of management, was 1680 plants/ha on the steep-land site where plants were planted in single rows with 2.5 m × 2.5 m spacings. However on the level site a double-row triangular layout with inter-row distances of 4.5 m to allow vehicular access (1724 plants/ha) gave the best results. With this arrangement plants were in an alternate, triangular arrangement along a row and a spacing of 1.5 m between plants at the points of each triangle and between each block of triangles.
Resumo:
Forest health surveillance (FHS) of hardwood plantations commenced in Queensland in 1997 as plantations expanded following a state government planting initiative arising from the national 2020 forest policy vision. The estate was initially characterised by a large number of small plantations (10-50 ha), although this has changed more recently with the concentration of larger plantations in the central coast and South Burnett regions. Due to the disparate nature of the resource, drive- and walkthrough surveys of subsets of plantations have been undertaken in preference to aerial surveys. FHS has been effective in detecting a number of new hardwood pests in Queensland including erinose mites (Rhombacus and Acalox spp.), western white gum plate galler (Ophelimus sp.), Creiis psyllid and bronzing bug (Thaumastocoris sp.), in evaluating their potential impact and assisting in focussing future research efforts. Since 2003 there has been an increased emphasis on training operational staff to take a greater role in identifying and reporting on forest health issues. This has increased their awareness of forest health issues, but their limited time to specifically survey and report on pests and diseases, and high rates of staff turnover, necessitate frequent ongoing training. Consequently, common and widespread problems such as quambalaria shoot blight (Quambalaria pitereka), chrysomelid leaf beetles (mainly Paropsis atomaria) and erinose mites may be under-reported or not reported, and absence data may often not be recorded at all. Comment is made on the future directions that FHS may take in hardwood plantations in Queensland.
Resumo:
Plugs or containerized plants can offer several advantages over traditional bare-rooted runner plants for strawberry (Fragaria x ananassa) production. Some of these benefits include easier planting, better establishment, fewer pests and diseases, and lower water use during plant establishment resulting in less leaching of applied fertilizers. Plugs also offer the potential for mechanical planting. In some areas of Europe and North America, plugs provide earlier production, greater productivity and larger fruit than runners. Research has also shown that the plants can be grown under short days and low temperatures to manipulate flower initiation and fruiting. Plugs are more expensive to buy compared with runner plants, and will only be adopted by industry if the extra costs are matched by convenience, resource conservation, increased fruiting and returns to producers. We investigated the productivity of 'Festival' and 'Sugarbaby' propagated as plugs (75 cm3 containers) and runners from Stanthorpe in southern Queensland (elevation of 872 m), and grown at Nambour on the Sunshine Coast (elevation 29 m). At planting, the plug plants weighed 0.8 ± 0.1 g DW compared with 53 ± 0.5 g DW for the runner plants. 'Sugarbaby' plugs were larger than 'Festival' plugs (33 ± 0.6 g versus 2.9 ± 0.6 g). The differences in growth at planting were maintained until the third week of July (day 94), with the plug plants weighing 17.8 ± 2.2 g, and the runner plants 21.4 ± 23 g. The proportion of plant dry matter allocated to the leaves increased over time from 59 to 70%, while the proportion allocated to the roots decreased from 21 to 10%. Harvest commenced after 60 days, with the plug plants yielding only 60% of the yields of the runner plants up until 8 August or day 109 (14.2 ± 1.4 g plant -1 week-1 versus 23.6 ± 1.9 g plant-1 week-1). 'Festival' (22.2 ± 2.0 g plant-1 week -1) had higher yields than 'Sugarbaby' (15.5 ± 1.5 g plant-1 week-1), even though plants of the latter were larger. Average fruit weight was 15.6 ± 0.3 g, with no effect of cultivar, plant type or harvest time. In other words, the differences in yield between the various treatments were due to differences in fruit set The lower yields of the plug plants probably reflect their small size at planting. Future research should determine whether plugs grown in larger cells (150 to 300 cm3 as in the USA and Europe) are more productive. Tips to be grown in larger containers should be harvested earlier than those for small cells to maximize root growth of the plug plant. This will probably extend the time required from harvest of the tips and potting them from the current four to five weeks, to eight to ten weeks.
Resumo:
A restricted maximum likelihood analysis applied to an animal model showed no significant differences (P > 0.05) in pH value of the longissimus dorsi measured at 24 h post-mortem (pH24) between high and low lines of Large White pigs selected over 4 years for post-weaning growth rate on restricted feeding. Genetic and phenotypic correlations between pH24 and production and carcass traits were estimated using all performance testing records combined with the pH24 measurements (5.05-7.02) on slaughtered animals. The estimate of heritability for pH24 was moderate (0.29 ± 0.18). Genetic correlations between pH24 and production or carcass composition traits, except for ultrasonic backfat (UBF), were not significantly different from zero. UBF had a moderate, positive genetic correlation with pH24 (0.24 ± 0.33). These estimates of genetic correlations affirmed that selection for increased growth rate on restricted feeding is likely to result in limited changes in pH24 and pork quality since the selection does not put a high emphasis on reduced fatness.
Resumo:
Instantaneous natural mortality rates and a nonparametric hunting mortality function are estimated from a multiple-year tagging experiment with arbitrary, time-dependent fishing or hunting mortality. Our theory allows animals to be tagged over a range of times in each year, and to take time to mix into the population. Animals are recovered by hunting or fishing, and death events from natural causes occur but are not observed. We combine a long-standing approach based on yearly totals, described by Brownie et al. (1985, Statistical Inference from Band Recovery Data: A Handbook, Second edition, United States Fish and Wildlife Service, Washington, Resource Publication, 156), with an exact-time-of-recovery approach originated by Hearn, Sandland and Hampton (1987, Journal du Conseil International pour l'Exploration de la Mer, 43, 107-117), who modeled times at liberty without regard to time of tagging. Our model allows for exact times of release and recovery, incomplete reporting of recoveries, and potential tag shedding. We apply our methods to data on the heavily exploited southern bluefin tuna (Thunnus maccoyii).
Resumo:
The further development of Taqman quantitative real-time PCR (qPCR) assays for the absolute quantitation of Marek's disease virus serotype 1 (MDV1) and Herpesvirus of turkeys (HVT) viruses is described and the sensitivity and reproducibility of each assay reported. Using plasmid DNA copies, the lower limit of detection was determined to be 5 copies for the MDV1 assay and 75 copies for the HVT assay. Both assays were found to be highly reproducible for Ct values and calculated copy numbers with mean intra- and inter-assay coefficients of variation being less than 5% for Ct and 20% for calculated copy number. The genome copy number of MDV1 and HVT viruses was quantified in PBL and feather tips from experimentally infected chickens, and field poultry dust samples. Parallelism was demonstrated between the plasmid-based standard curves, and standard curves derived from infected spleen material containing both viral and host DNA, allowing the latter to be used for absolute quantification. These methods should prove useful for the reliable differentiation and absolute quantitation of MDV1 and HVT viruses in a wide range of samples.