36 resultados para partial least square


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal oxide semiconductor (MOS) sensors are a class of chemical sensor that have potential for being a practical core sensor module for an electronic nose system in various environmental monitoring applications. However, the responses of these sensors may be affected by changes in humidity and this must be taken into consideration when developing calibration models. This paper characterises the humidity dependence of a sensor array which consists of 12 MOS sensors. The results were used to develop calibration models using partial least squares. Effects of humidity on the response of the sensor array and predictive ability of partial least squares are discussed. It is shown that partial least squares can provide proper calibration models to compensate for effects caused by changes in humidity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal oxide semiconductor (MOS) sensors are a class of chemical sensors that have potential for being a practical core sensor module for an electronic nose system in various environmental monitoring applications. However, the responses of these sensors may be affected by changes in humidity and this must be taken into consideration when developing calibration models. This paper characterises the humidity dependence of a sensor array which consists of 12 MOS sensors. The results were used to develop calibration models using partial least squares (PLS). Effects of humidity on the response of the sensor array and predictive ability of partial least squares are discussed. It is shown that partial least squares can provide proper calibration models to compensate for effects caused by changes in humidity. Special Issue: Selected Paper from the 12th International Symposium on Olfaction and Electronic Noses - ISOEN 2007, International Symposium on Olfaction and Electronic Noses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acacia and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. This research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acacia and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. This research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials. © 2015, The Author(s).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of near infrared (NIR) hyperspectral imaging and hyperspectral image analysis for distinguishing between hard, intermediate and soft maize kernels from inbred lines was evaluated. NIR hyperspectral images of two sets (12 and 24 kernels) of whole maize kernels were acquired using a Spectral Dimensions MatrixNIR camera with a spectral range of 960-1662 nm and a sisuChema SWIR (short wave infrared) hyperspectral pushbroom imaging system with a spectral range of 1000-2498 nm. Exploratory principal component analysis (PCA) was used on absorbance images to remove background, bad pixels and shading. On the cleaned images. PCA could be used effectively to find histological classes including glassy (hard) and floury (soft) endosperm. PCA illustrated a distinct difference between glassy and floury endosperm along principal component (PC) three on the MatrixNIR and PC two on the sisuChema with two distinguishable clusters. Subsequently partial least squares discriminant analysis (PLS-DA) was applied to build a classification model. The PLS-DA model from the MatrixNIR image (12 kernels) resulted in root mean square error of prediction (RMSEP) value of 0.18. This was repeated on the MatrixNIR image of the 24 kernels which resulted in RMSEP of 0.18. The sisuChema image yielded RMSEP value of 0.29. The reproducible results obtained with the different data sets indicate that the method proposed in this paper has a real potential for future classification uses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: The inability to consistently guarantee internal quality of horticulture produce is of major importance to the primary producer, marketers and ultimately the consumer. Currently, commercial avocado maturity estimation is based on the destructive assessment of percentage dry matter (%DM), and sometimes percentage oil, both of which are highly correlated with maturity. In this study the utility of Fourier transform (FT) near-infrared spectroscopy (NIRS) was investigated for the first time as a non-invasive technique for estimating %DM of whole intact 'Hass' avocado fruit. Partial least squares regression models were developed from the diffuse reflectance spectra to predict %DM, taking into account effects of intra-seasonal variation and orchard conditions. RESULTS: It was found that combining three harvests (early, mid and late) from a single farm in the major production district of central Queensland yielded a predictive model for %DM with a coefficient of determination for the validation set of 0.76 and a root mean square error of prediction of 1.53% for DM in the range 19.4-34.2%. CONCLUSION: The results of the study indicate the potential of FT-NIRS in diffuse reflectance mode to non-invasively predict %DM of whole 'Hass' avocado fruit. When the FT-NIRS system was assessed on whole avocados, the results compared favourably against data from other NIRS systems identified in the literature that have been used in research applications on avocados.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Near infrared (NIR) spectroscopy was investigated as a potential rapid method of estimating fish age from whole otoliths of Saddletail snapper (Lutjanus malabaricus). Whole otoliths from 209 Saddletail snapper were extracted and the NIR spectral characteristics were acquired over a spectral range of 800–2780 nm. Partial least-squares models (PLS) were developed from the diffuse reflectance spectra and reference-validated age estimates (based on traditional sectioned otolith increments) to predict age for independent otolith samples. Predictive models developed for a specific season and geographical location performed poorly against a different season and geographical location. However, overall PLS regression statistics for predicting a combined population incorporating both geographic location and season variables were: coefficient of determination (R2) = 0.94, root mean square error of prediction (RMSEP) = 1.54 for age estimation, indicating that Saddletail age could be predicted within 1.5 increment counts. This level of accuracy suggests the method warrants further development for Saddletail snapper and may have potential for other fish species. A rapid method of fish age estimation could have the potential to reduce greatly both costs of time and materials in the assessment and management of commercial fisheries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent decreases in costs, and improvements in performance, of silicon array detectors open a range of potential applications of relevance to plant physiologists, associated with spectral analysis in the visible and short-wave near infra-red (far-red) spectrum. The performance characteristics of three commercially available ‘miniature’ spectrometers based on silicon array detectors operating in the 650–1050-nm spectral region (MMS1 from Zeiss, S2000 from Ocean Optics, and FICS from Oriel, operated with a Larry detector) were compared with respect to the application of non-invasive prediction of sugar content of fruit using near infra-red spectroscopy (NIRS). The FICS–Larry gave the best wavelength resolution; however, the narrow slit and small pixel size of the charge-coupled device detector resulted in a very low sensitivity, and this instrumentation was not considered further. Wavelength resolution was poor with the MMS1 relative to the S2000 (e.g. full width at half maximum of the 912 nm Hg peak, 13 and 2 nm for the MMS1 and S2000, respectively), but the large pixel height of the array used in the MMS1 gave it sensitivity comparable to the S2000. The signal-to-signal standard error ratio of spectra was greater by an order of magnitude with the MMS1, relative to the S2000, at both near saturation and low light levels. Calibrations were developed using reflectance spectra of filter paper soaked in range of concentrations (0–20% w/v) of sucrose, using a modified partial least squares procedure. Calibrations developed with the MMS1 were superior to those developed using the S2000 (e.g. coefficient of correlation of 0.90 and 0.62, and standard error of cross-validation of 1.9 and 5.4%, respectively), indicating the importance of high signal to noise ratio over wavelength resolution to calibration accuracy. The design of a bench top assembly using the MMS1 for the non-invasive assessment of mesocarp sugar content of (intact) melon fruit is reported in terms of light source and angle between detector and light source, and optimisation of math treatment (derivative condition and smoothing function).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Brix content of pineapple fruit can be non-invasively predicted from the second derivative of near infrared reflectance spectra. Correlations obtained using a NIRSystems 6500 spectrophotometer through multiple linear regression and modified partial least squares analyses using a post-dispersive configuration were comparable with that from a pre-dispersive configuration in terms of accuracy (e.g. coefficient of determination, R2, 0.73; standard error of cross validation, SECV, 1.01°Brix). The effective depth of sample assessed was slightly greater using the post-dispersive technique (about 20 mm for pineapple fruit), as expected in relation to the higher incident light intensity, relative to the pre-dispersive configuration. The effect of such environmental variables as temperature, humidity and external light, and instrumental variables such as the number of scans averaged to form a spectrum, were considered with respect to the accuracy and precision of the measurement of absorbance at 876 nm, as a key term in the calibration for Brix, and predicted Brix. The application of post-dispersive near infrared technology to in-line assessment of intact fruit in a packing shed environment is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The potential of near infra-red (NIR) spectroscopy for non-invasive measurement of fruit quality of pineapple (Ananas comosus var. Smooth Cayenne) and mango (Magnifera indica var. Kensington) fruit was assessed. A remote reflectance fibre optic probe, placed in contact with the fruit skin surface in a light-proof box, was used to deliver monochromatic light to the fruit, and to collect NIR reflectance spectra (760–2500 nm). The probe illuminated and collected reflected radiation from an area of about 16 cm2. The NIR spectral attributes were correlated with pineapple juice Brix and with mango flesh dry matter (DM) measured from fruit flesh directly underlying the scanned area. The highest correlations for both fruit were found using the second derivative of the spectra (d2 log 1/R) and an additive calibration equation. Multiple linear regression (MLR) on pineapple fruit spectra (n = 85) gave a calibration equation using d2 log 1/R at wavelengths of 866, 760, 1232 and 832 nm with a multiple coefficient of determination (R2) of 0.75, and a standard error of calibration (SEC) of 1.21 °Brix. Modified partial least squares (MPLS) regression analysis yielded a calibration equation with R2 = 0.91, SEC = 0.69, and a standard error of cross validation (SECV) of 1.09 oBrix. For mango, MLR gave a calibration equation using d2 log 1/R at 904, 872, 1660 and 1516 nm with R2 = 0.90, and SEC = 0.85% DM and a bias of 0.39. Using MPLS analysis, a calibration equation with R2 = 0.98, SEC = 0.54 and SECV = 1.19 was obtained. We conclude that NIR technology offers the potential to assess fruit sweetness in intact whole pineapple and DM in mango fruit, respectively, to within 1° Brix and 1% DM, and could be used for the grading of fruit in fruit packing sheds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The utility of near infrared spectroscopy as a non-invasive technique for the assessment of internal eating quality parameters of mandarin fruit (Citrus reticulata cv. Imperial) was assessed. The calibration procedure for the attributes of TSS (total soluble solids) and DM (dry matter) was optimised with respect to a reference sampling technique, scan averaging, spectral window, data pre-treatment (in terms of derivative treatment and scatter correction routine) and regression procedure. The recommended procedure involved sampling of an equatorial position on the fruit with 1 scan per spectrum, and modified partial least squares model development on a 720–950-nm window, pre-treated as first derivative absorbance data (gap size of 4 data points) with standard normal variance and detrend scatter correction. Calibration model performance for the attributes of TSS and DM content was encouraging (typical Rc2 of >0.75 and 0.90, respectively; typical root mean squared standard error of calibration of <0.4 and 0.6%, respectively), whereas that for juiciness and total acidity was unacceptable. The robustness of the TSS and DM calibrations across new populations of fruit is documented in a companion study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Predictive models based on near infra-red spectroscopy for the assessment of fruit internal quality attributes must exhibit a degree of robustness across the parameters of variety, district and time to be of practical use in fruit grading. At the time this thesis was initiated, while there were a number of published reports on the development of near infra-red based calibration models for the assessment of internal quality attributes of intact fruit, there were no reports of the reliability ("robustness") of such models across time, cultivars or growing regions. As existing published reports varied in instrumentation employed, a re-analysis of existing data was not possible. An instrument platform, based on partial transmittance optics, a halogen light source and (Zeiss MMS 1) detector operating in the short wavelength near infra-red region was developed for use in the assessment of intact fruit. This platform was used to assess populations of macadamia kernels, melons and mandarin fruit for total soluble solids, dry matter and oil concentration. Calibration procedures were optimised and robustness assessed across growing areas, time of harvest, season and variety. In general, global modified partial least squares regression (MPLS) calibration models based on derivatised absorbance data were better than either multiple linear regression or `local' MPLS models in the prediction of independent validation populations . Robustness was most affected by growing season, relative to the growing district or variety . Various calibration updating procedures were evaluated in terms of calibration robustness. Random selection of samples from the validation population for addition to the calibration population was equivalent to or better than other methods of sample addition (methods based on the Mahalanobis distance of samples from either the centroid of the population or neighbourhood samples). In these exercises the global Mahalanobis distance (GH) was calculated using the scores and loadings from the calibration population on the independent validation population. In practice, it is recommended that model predictive performance be monitored in terms of predicted sample GH, with model updating using as few as 10 samples from the new population undertaken when the average GH value exceeds 1 .0 .

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fatty acid composition of ground nuts (Arachis hypogaea L.) commonly known as peanuts, is an important consideration when a new variety is being released. The composition impacts on nutrition and, importantly, self-life of peanut products. To select for suitable breeding material, it was necessary to develop a rapid, non-derstructive and cost-efficient method. Near infrared spectroscopy was chosen as that methodology. Calibrations were developed for two major fatty-acid components, oleic and linoleic acids and two minor components, palmitic and stearic acids, as well as total oil content. Partial least squares models indicated a high level of precision with a squared multiple correlation coefficient of greater than 0.90 for each constitutent. Standard errors for prediction for oleic, linoleic, palmitic, stearic acids and total oil content were 6.4%, 4.5%, 0.8%, 0.9% and 1.3% respectively. The results demonstrated that reasonable calibrations could be developed to predict oil composition and content of peanuts for a breeding programme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Volatile chemical compounds responsible for the aroma of wine are derived from a number of different biochemical and chemical pathways. These chemical compounds are formed during grape berry metabolism, crushing of the berries, fermentation processes (i.e. yeast and malolactic bacteria) and also from the ageing and storage of wine. Not surprisingly, there are a large number of chemical classes of compounds found in wine which are present at varying concentrations (ng L-1 to mg L-1), exhibit differing potencies, and have a broad range of volatilities and boiling points. The aim of this work was to investigate the potential use of near infrared (NIR) spectroscopy combined with chemometrics as a rapid and low-cost technique to measure volatile compounds in Riesling wines. Samples of commercial Riesling wine were analyzed using an NIR instrument and volatile compounds by gas chromatography (GC) coupled with selected ion monitoring mass spectrometry. Correlation between the NIR and GC data were developed using partial least-squares (PLS) regression with full cross validation (leave one out). Coefficients of determination in cross validation (R 2) and the standard error in cross validation (SECV) were 0.74 (SECV: 313.6 μg L−1) for esters, 0.90 (SECV: 20.9 μg L−1) for monoterpenes and 0.80 (SECV: 1658 ?g L-1) for short-chain fatty acids. This study has shown that volatile chemical compounds present in wine can be measured by NIR spectroscopy. Further development with larger data sets will be required to test the predictive ability of the NIR calibration models developed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Near infrared spectroscopy (NIRS) combined with multivariate analysis techniques was applied to assess phenol content of European oak. NIRS data were firstly collected directly from solid heartwood surfaces: in doing so, the spectra were recorded separately from the longitudinal radial and the transverse section surfaces by diffuse reflectance. The spectral data were then pretreated by several pre-processing procedures, such as multiplicative scatter correction, first derivative, second derivative and standard normal variate. The tannin contents of sawmill collected from the longitudinal radial and transverse section surfaces were determined by quantitative extraction with water/methanol (1:4, by vol). Then, total phenol contents in tannin extracts were measured by the Folin-Ciocalteu method. The NIR data were correlated against the Folin-Ciocalteu results. Calibration models built with partial least squares regression displayed strong correlation - as expressed by high determination correlation coefficient (r2) and high ratio of performance to deviation (RPD) - between measured and predicted total phenols content, and weak calibration and prediction errors (RMSEC, RMSEP). The best calibration was provided with second derivative spectra (r2 value of 0.93 for the longitudinal radial plane and of 0.91 for the transverse section plane). This study illustrates that the NIRS technique when used in conjunction with multivariate analysis could provide reliable, quick and non-destructive assessment of European oak heartwood extractives.