81 resultados para invariant densities
Resumo:
Field studies were conducted at two locations in southern Queensland, Australia during the 2003-2004 and 2004-2005 growing seasons to determine the differential competitiveness of sorghum (Sorghum bicolor L. Moench) cultivars and crop densities against weeds and the sorghum yield loss due to weeds. Weed competition was investigated by growing sorghum in the presence or absence of a model grass weed, Japanese millet (Echinochloa esculenta). The correlation analyses showed that the early growth traits (height, shoot biomass, and daily growth rate of the shoot biomass) of sorghum adversely affected the height, biomass, and seed production of millet, as measured at maturity. "MR Goldrush" and "Bonus MR" were the most competitive cultivars, resulting in reduced weed biomass, weed density, and weed seed production. The density of sorghum also had a significant effect on the crop's ability to compete with millet. When compared to the density of 4.5 plants per m2, sorghum that was planted at 7.5 plants per m2 suppressed the density, biomass, and seed production of millet by 22%, 27% and 38%, respectively. Millet caused a significant yield loss in comparison with the weed-free plots. The combined weed-suppressive effects of the competitive cultivars, such as MR Goldrush, and high crop densities minimized the yield losses from the weeds. These results indicate that sorghum competition against grass weeds can be improved by choosing competitive cultivars and by using a high crop density of > 7.5 plants per m2. These non-chemical options should be included in an integrated weed management program for better weed management, particularly where the control options are limited by the evolution of herbicide resistance.
Resumo:
To experimentally investigate the effect of vertical artificial substrate and different densities of the banana prawn Penaeus (Fenneropenaeus) merguiensis on nutrient levels in prawn pond effluent, a time series experiment was conducted in a replicated tank system supplied periodically with discharge from a prawn production pond. Few differences (P>0.05) were detected between tanks without prawns, and tanks with low densities (5 prawns in 1700 litres) of prawns (10-12 g), in terms of nitrogen and phosphorus in the water column over the 28-day experimental period. Higher densities of prawns (starting at 25 or 50 per tank) caused an elevation of these macronutrients in the water column. This was partly due to prawn biomass losses from mortalities and weight reductions in the tank system. The survival and condition of prawns was significantly (P<0.05) reduced in tanks at these higher densities. The presence of artificial substrate (2 m2 tank-1) did not affect (P>0.05) the levels of nutrients in tank water columns, but significantly (P<0.05) increased the amount of nitrogen in tank residues left at the end of the trial when no prawns were present. The prawns had obviously been grazing on surfaces inside the tanks, and their swimming actions appeared to keep light particulate matter in suspension. Higher prawn densities increased microalgal blooms, which presumably kept ammonia levels low, and it is suggested that this association may provide the means for improved remediation of prawn farm effluent in the future.
Resumo:
Sleepy cod Oxyeleotris lineolatus is a species of freshwater goby in demand in Australian markets by consumers of Asian origin. It is related to marble goby Oxyeleotris marmoratus, the most expensive freshwater food fish in Asia, which is cultured throughout southeast Asia in ponds and cages. The performance of sleepy cod in culture conditions was investigated to assess the viability of farming them in northern Australia. Sleepy cod fingerlings (62.8 +/- 0.8 mm total length and 2.56 +/- 0.095 g) were stocked into experimental ponds at 32,857 fish/ha, and grown out for 8 mo. Shelter was provided in each of three replicate ponds and was absent in three control ponds. The provision of shelter in juvenile growout was found to be of no benefit, although fish in ponds provided with shelter weighed slightly more per unit length than fish in ponds without shelter. Cannibalism was not a problem in growout, and survival was close to 100%. After the shelter trial was completed, fish were graded into large and small classes (three replicates of each), and grown out without shelter at the same density for 158 d. Following that, fish were again graded, and the largest 30% retained from growout at a density of 8,857 fish/ha (large, 198 +/-6.44 g) or 10,000 fish/ha (small, 48.9 +/-1.27 g). These were grown out for 188 d. Growth of selected stock at low densities was slower than earlier growth rates, although smaller fish gained weight more rapidly than larger fish. Growth rates were better than the only published data for marble goby. Further investigation into high density culture and different genotypes of sleepy cod needs to be undertaken to determine the viability of pond culture.
Resumo:
Mounting levels of insecticide resistance within Australian Helicoverpa spp. populations have resulted in the adoption of non-chemical IPM control practices such as trap cropping with chickpea, Cicer arietinum (L.). However, a new leaf blight disease affecting chickpea in Australia has the potential to limit its use as a trap crop. Therefore this paper evaluates the potential of a variety of winter-active legume crops for use as an alternative spring trap crop to chickpea as part of an effort to improve the area-wide management strategy for Helicoverpa spp. in central Queensland’s cotton production region. The densities of Helicoverpa eggs and larvae were compared over three seasons on replicated plantings of chickpea, Cicer arietinum (L.), field pea Pisum sativum (L), vetch, Vicia sativa (L.) and faba bean, Vicia faba (L.). Of these treatments, field pea was found to harbour the highest densities of eggs. A partial life table study of the fate of eggs oviposited on field pea and chickpea suggested that large proportions of the eggs laid on field pea suffered mortality due to dislodgment from the plants after oviposition. Plantings of field pea as a replacement trap crop for chickpea under commercial conditions confirmed the high level of attractiveness of this crop to ovipositing moths. The use of field pea as a trap crop as part of an areawide management programme for Helicoverpa spp. is discussed.
Resumo:
Scarab species associated with groundnuts were surveyed in Andhra Pradesh, Karnataka and Tamil Nadu, southern India, between 1995 and 2001. Scarab adults were collected from trees on which they were feeding and/or mating, and larvae (white grubs) from groundnut fields. Holotrichia species, especially H. reynaudi and H. serrata were the major species associated with groundnut. H. reynaudi predominated in the central Deccan area, while H. serrata was most abundant in areas to the south and west. A new, undescribed, Holotrichia species near H. consanguinea was collected south and south-west of Hyderabad in mixed populations with H. reynaudi. However, the full extent of this new species’ distribution remains uncertain. H. rufoflava was rarely associated with groundnut, but was common as an adult at some locations. Other genera encountered during surveys were Anomala, Adoretus, Schizonycha, Autoserica. In survey data, densities of Holotrichia larvae and ‘all other white grubs’ were both very highly correlated with % of damaged groundnut plants. These correlations in combination with concurrent observations of plant damage establish a causal link between white grubs and plant damage and death in southern Indian groundnut. Ranking of preferred host trees for adults were developed from field observations for four Holotrichia species and Schizonycha spp. and will assist grower-initiated surveys of pest occurrence. In combination with insecticide efficacy data published elsewhere, the survey provides the basis for an environmentally friendly and economically viable pest-management system for white grubs on groundnut in southern India.
Resumo:
The seed-feeding jewel bug, Agonosoma trilineatum (F.), is an introduced biological control agent for bellyache bush, Jatropha gossypiifolia L. To quantify the damage potential of this agent, shadehouse experiments were conducted with individual bellyache bush plants exposed to a range of jewel bug densities (0, 6 or 24 jewel bugs/plant). The level of abortion of both immature and mature seed capsules and impacts on seed weight and seed viability were recorded in an initial short-term study. The ability of the jewel bug to survive and cause sustained damage was then investigated by measuring seed production, the survival of adults and nymph density across three 6-month cycles. The level of seed capsule abortion caused by the jewel bug was significantly affected by the maturity status of capsules and the density of insects present. Immature capsules were most susceptible and capsule abortion increased with jewel bug density. Similarly, on average, the insects reduced the viability of bellyache bush seeds by 79% and 89% at low and high densities, respectively. However, sustaining jewel bug populations for prolonged periods proved difficult. Adult survival at the end of three 6-month cycles averaged 11% and associated reductions in viable seed production ranged between 55% and 77%. These results suggest that the jewel bug has the potential to reduce the number of viable seeds entering the soil seed bank provided populations can be established and maintained at sufficiently high densities.
Resumo:
Distributions of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in litter of a compacted earth floor broiler house in southeastern Queensland, Australia, were studied over two flocks. Larvae were the predominant stage recorded. Significantly low densities occurred in open locations and under drinker cups where chickens had complete access, whereas high densities were found under feed pans and along house edges where chicken access was restricted. For each flock, lesser mealworm numbers increased at all locations over the first 14 d, especially under feed pans and along house edges, peaking at 26 d and then declining over the final 28 d. A life stage profile per flock was devised that consisted of the following: beetles emerge from the earth floor at the beginning of each flock, and females lay eggs, producing larvae that peak in numbers at 3 wk; after a further 3 to 4 wk, larvae leave litter to pupate in the earth floor, and beetles then emerge by the end of the flock time. Removing old litter from the brooder section at the end of a flock did not greatly reduce mealworm numbers over the subsequent flock, but it seemed to prevent numbers increasing, while an increase in numbers in the grow-out section was recorded after reusing litter. Areas under feed pans and along house edges accounted for 5% of the total house area, but approximately half the estimated total number of lesser mealworms in the broiler house occurred in these locations. The results of this study will be used to determine optimal deployment of site-specific treatments for lesser mealworm control.
Resumo:
Data on seasonal population abundance of Bemisia tabaci biotype B (silverleaf whitefly (SLW)) in Australian cotton fields collected over four consecutive growing seasons (2002/2003-2005/2006) were used to develop and validate a multiple-threshold-based management and sampling plan. Non-linear growth trajectories estimated from the field sampling data were used as benchmarks to classify adult SLW field populations into six density-based management zones with associated control recommendations in the context of peak flowering and open boll crop growth stages. Control options based on application of insect growth regulators (IGRs) are recommended for high-density populations (>2 adults/leaf) whereas conventional (non-IGR) products are recommended for the control of low to moderate population densities. A computerised re-sampling program was used to develop and test a binomial sampling plan. Binomial models with thresholds of T=1, 2 and 3 adults/leaf were tested using the field abundance data. A binomial plan based on a tally threshold of T=2 adults/leaf and a minimum sample of 20 leaves at nodes 3, 4 or 5 below the terminal is recommended as the most parsimonious and practical sampling protocol for Australian cotton fields. A decision support guide with management zone boundaries expressed as binomial counts and control options appropriate for various SLW density situations is presented. Appropriate use of chemical insecticides and tactics for successful field control of whiteflies are discussed.
Resumo:
Aerial surveys of kangaroos (Macropus spp.) in Queensland are used to make economically important judgements on the levels of viable commercial harvest. Previous analysis methods for aerial kangaroo surveys have used both mark-recapture methodologies and conventional distance-sampling analyses. Conventional distance sampling has the disadvantage that detection is assumed to be perfect on the transect line, while mark-recapture methods are notoriously sensitive to problems with unmodelled heterogeneity in capture probabilities. We introduce three methodologies for combining together mark-recapture and distance-sampling data, aimed at exploiting the strengths of both methodologies and overcoming the weaknesses. Of these methods, two are based on the assumption of full independence between observers in the mark-recapture component, and this appears to introduce more bias in density estimation than it resolves through allowing uncertain trackline detection. Both of these methods give lower density estimates than conventional distance sampling, indicating a clear failure of the independence assumption. The third method, termed point independence, appears to perform very well, giving credible density estimates and good properties in terms of goodness-of-fit and percentage coefficient of variation. Estimated densities of eastern grey kangaroos range from 21 to 36 individuals km-2, with estimated coefficients of variation between 11% and 14% and estimated trackline detection probabilities primarily between 0.7 and 0.9.
Resumo:
Surveys were conducted between 1997 and 2001 to investigate the incidence of overwintering Helicoverpa spp. pupae under summer crop residues on the Darling Downs, Queensland. Only Helicoverpa armigera was represented in collections of overwintering pupae. The results indicated that late-season crops of cotton, sorghum, maize, soybean, mungbean and sunflower were equally likely to have overwintering pupae under them. In the absence of tillage practices, these crops had the potential to produce similar numbers of moths/ha in the spring. There were expected differences between years in the densities of overwintering pupae and the number of emerged moths/ha. Irrigated crops produced 2.5 times more moths/ha than dryland crops. Overall survival from autumn-formed pupae to emerged moths averaged 44%, with a higher proportion of pupae under maize surviving to produce moths than each of the other crops. Parasitoids killed 44.1% of pupae, with Heteropelma scaposum representing 83.3% of all parasitoids reared from pupae. Percentage parasitism levels were lower in irrigated crops (27.6%) compared with dryland crops (40.5%). Recent changes to Helicoverpa spp. management in cotton/grain-farming systems in south-eastern Queensland, including widespread adoption of Bt cotton, and use of more effective and more selective insecticides, could lead to lower densities of overwintering pupae under late summer crops.
Resumo:
Calotrope [Calotropis procera (Aiton) W.T.Aiton] is an exotic shrub or small tree species that is currently invading the tropical savannahs of northern Australia. A chemical trial involving 11 herbicides and four application methods (foliar, basal bark, cut stump and soil applied) was undertaken to identify effective chemicals to control calotrope. Of the foliar herbicides tested, imazapyr provided 100% mortality at the rates applied, and the higher rate of metsulfuron-methyl killed 100% of the treated plants. The herbicides 2,4-D butyl ester, fluroxypyr, triclopyr and triclopyr/picloram killed greater than 80% of the plants when applied by a basal bark or cut stump (when cut 5cm above ground level) method of application. Plants cut close to ground level (5cm) were controlled more effectively than plants cut 20cm above ground level. Chemical control (foliar and cut stump spraying) is a cost effective tool to treat calotrope densities <800plants/ha. Adoption of pasture management practices that promote perennial grasses, in conjunction with strategic chemical control, would further increase the effectiveness and reduce the costs of controlling vast areas of this weed.
Resumo:
Aims: To identify dominant bacteria in grain (barley)-fed cattle for isolation and future use to increase the efficiency of starch utilization in these cattle. Methods and Results: Total DNA was extracted from samples of the rumen contents from eight steers fed a barley diet for 9 and 14 days. Bacterial profiles were obtained using denaturing gradient gel electrophoresis (DGGE) of the PCR-amplified V2/V3 region of the 16S rRNA genes from total bacterial DNA. Apparently dominant bands were excised and cloned, and the clone insert sequence was determined. One of the most common and dominant bacteria present was identified as Ruminococcus bromii. This species was subsequently isolated using traditional culture-based techniques and its dominance in the grain-fed cattle was confirmed using a real-time Taq nuclease assay (TNA) designed for this purpose. In some animals, the population of R. bromii reached densities above 1010R. bromii cell equivalents per ml or approximately 10% of the total bacterial population. Conclusions: Ruminococcus bromii is a dominant bacterial population in the rumen of cattle fed a barley-based diet. Significance and Impact of the Study: Ruminococcus bromii YE282 may be useful as a probiotic inoculant to increase the efficiency of starch utilization in barley-fed cattle. The combination of DGGE and real-time TNA has been an effective process for identifying and targeting for isolation, dominant bacteria in a complex ecosystem.
Resumo:
Intensive nursery systems are designed to culture mud crab postlarvae through a critical phase in preparation for stocking into growout systems. This study investigated the influence of stocking density and provision of artificial habitat on the yield of a cage culture system. For each of three batches of postlarvae, survival, growth and claw loss were assessed after each of three nursery phases ending at crab instars C1/C2, C4/C5 and C7/C8. Survival through the first phase was highly variable among batches with a maximum survival of 80% from megalops to a mean crab instar of 1.5. Stocking density between 625 and 2300 m-2 did not influence survival or growth in this first phase. Stocking densities tested in phases 2 and 3 were 62.5, 125 and 250 m -2. At the end of phases 2 and 3, there were five instar stages present, representing a more than 20-fold size disparity within the populations. Survival became increasingly density-sensitive following the first phase, with higher densities resulting in significantly lower survival (phase 2: 63% vs. 79%; phase 3: 57% vs. 64%). The addition of artificial habitat in the form of pleated netting significantly improved survival at all densities. The mean instar attained by the end of phase 2 was significantly larger at a lower stocking density and without artificial habitat. No significant effect of density or habitat on harvest size was detected in phase 3. The highest incidence of claw loss was 36% but was reduced by lowering stocking densities and addition of habitat. For intensive commercial production, yield can be significantly increased by addition of a simple net structure but rapidly decreases the longer crablets remain in the nursery.
Resumo:
Arbuscular mycorrhizal (AM) fungi, commonly found in long-term cane-growing fields in northern Queensland, are linked with both negative and positive growth responses by sugarcane (Saccharum spp.), depending on P supply. A glasshouse trial was established to examine whether AM density might also have an important influence on these growth responses. Mycorrhizal spores (Glomus clarum), isolated from a long-term cane block in northern Queensland, were introduced into a pasteurised low-P cane soil at 5 densities (0, 0.06, 0.25, 1, 4 spores/g soil) and with 4 P treatments (0, 8.2, 25, and 47 mg/kg). At 83 days after planting, sugarcane tops responded positively to P fertilizer, although responses attributable to spore density were rarely observed. In one case, addition of 4 spores/g led to a 53% yield response over those without AM at 8 mgP/kg, or a relative benefit of 17 mg P/kg. Root colonisation was reduced for plants with nil or 74 mg P/kg. For those without AM, P concentration in the topmost visible dewlap (TVD) leaf increased significantly with fertiliser P (0.07 v. 0.15%). However, P concentration increased further with the presence of AM spores. Irrespective of AM, the critical P concentration in the TVD leaf was 0.18%. This study confirms earlier reports that sugarcane is poorly responsive to AM. Spore density, up to 4 spores/g soil, appears unable to influence this responsiveness, either positively or negatively. Attempts to gain P benefits by increasing AM density through rotation seem unlikely to lead to yield increases by sugarcane. Conversely, sugarcane grown in fields with high spore densities and high plant-available P, such as long-term cane-growing soils, is unlikely to suffer a yield reduction from mycorrhizal fungi.
Resumo:
In dryland cotton cropping systems, the main weeds and effectiveness of management practices were identified, and the economic impact of weeds was estimated using information collected in a postal and a field survey of Southern Queensland and northern New South Wales. Forty-eight completed questionnaires were returned, and 32 paddocks were monitored in early and late summer for weed species and density. The main problem weeds were bladder ketmia (Hibiscus trionum), common sowthistle (Sonchus oleraceus), barnyard grasses (Echinochloa spp.), liverseed grass (Urochloa panicoides) and black bindweed (Fallopia convolvulus), but the relative importance of these differed with crops, fallows and crop rotations. The weed flora was diverse with 54 genera identified in the field survey. Control of weed growth in rotational crops and fallows depended largely on herbicides, particularly glyphosate in fallow and atrazine in sorghum, although effective control was not consistently achieved. Weed control in dryland cotton involved numerous combinations of selective herbicides, several non-selective herbicides, inter-row cultivation and some manual chipping. Despite this, residual weeds were found at 38-59% of initial densities in about 3-quarters of the survey paddocks. The on-farm financial costs of weeds ranged from $148 to 224/ha.year depending on the rotation, resulting in an estimated annual economic cost of $19.6 million. The approach of managing weed populations across the whole cropping system needs wider adoption to reduce the weed pressure in dryland cotton and the economic impact of weeds in the long term. Strategies that optimise herbicide performance and minimise return of weed seed to the soil are needed. Data from the surveys provide direction for research to improve weed management in this cropping system. The economic framework provides a valuable measure of evaluating likely future returns from technologies or weed management improvements.