27 resultados para fertilisation
Resumo:
Purpose This study investigated how nitrogen (N) nutrition and key physiological processes varied under changed water and nitrogen competition resulting from different weed control and fertilisation treatments in a 2-year-old F1 hybrid (Pinus elliottii Engelm var. elliottii × P. caribaea var. hondurensis Barr. ex Golf.) plantation on a grey podzolic soil type, in Southeast Queensland. Materials and methods The study integrated a range of measures including growth variables (diameter at ground level (DGL), diameter at breast height (DBH) and height (H)), foliar variables (including foliar N concentration, foliar δ13C and δ15N) and physiological variables (including photosynthesis (An), stomatal conductance (gs), transpiration (E), intrinsic water use efficiency (WUEi) (A/gs) and xylem pressure potential (ΨXPP)) to better understand the mechanisms influencing growth under different weed control and fertilisation treatments. Five levels of weed control were applied: standard (routine), luxury, intermediate, mechanical and nil weed control, all with routine fertilisation plus an additional treatment, routine weed control and luxury fertilisation. Relative weed cover was assessed at 0.8, 1.1 and 1.6 years after plantation establishment to monitor the effectiveness of weed control treatments. Soil investigation included soil ammonium (NH4 +-N), nitrate (NO3 −-N), potentially mineralizable N (PMN), gravimetric soil moisture content (MC), hot water extractable organic carbon (HWETC), hot water extractable total N (HWETN), total C, total N, stable C isotope composition (δ13C), stable N isotope composition (δ15N), total P and extractable K. Results and discussion There were significant relationships between foliar N concentrations and relative weed cover and between tree growth and foliar N concentration or foliar δ15N, but initial site preparation practices also increased soil N transformations in the planting rows reducing the observable effects of weed control on foliar δ15N. A positive relationship between foliar N concentration and foliar δ13C or photosynthesis indicated that increased N availability to trees positively influenced non-stomatal limitations to photosynthesis. However, trees with increased foliar N concentrations and photosynthesis were negatively related to xylem pressure potential in the afternoons which enhanced stomatal limitations to photosynthesis and WUEi. Conclusions Luxury and intermediate weed control and luxury fertilisation positively influenced growth at early establishment by reducing the competition for water and N resources. This influenced fundamental key physiological processes such as the relationships between foliar N concentration, A n, E, gs and ΨXPP. Results also confirmed that time from cultivation is an important factor influencing the effectiveness of using foliar δ15N as an indicator of soil N transformations.
Resumo:
Commercial environments may receive only a fraction of expected genetic gains for growth rate as predicted from the selection environment. This fraction is result of undesirable genotype-by-environment interactions (GxE) and measured by the genetic correlation (rg) of growth between environments. Rapid estimates of genetic correlation achieved in one generation are notoriously difficult to estimate with precision. A new design is proposed where genetic correlations can be estimated by utilising artificial mating from cryopreserved semen and unfertilised eggs stripped from a single female. We compare a traditional phenotype analysis of growth to a threshold model where only the largest fish are genotyped for sire identification. The threshold model was robust to differences in family mortality differing up to 30%. The design is unique as it negates potential re-ranking of families caused by an interaction between common maternal environmental effects and growing environment. The design is suitable for rapid assessment of GxE over one generation with a true 0.70 genetic correlation yielding standard errors as low as 0.07. Different design scenarios were tested for bias and accuracy with a range of heritability values, number of half-sib families created, number of progeny within each full-sib family, number of fish genotyped, number of fish stocked, differing family survival rates and at various simulated genetic correlation levels.
Resumo:
Carbon (C) sequestration in soils is a means for increasing soil organic carbon (SOC) stocks and is a potential tool for climate change mitigation. One recommended management practice to increase SOC stocks is nitrogen (N) fertilisation, however examples of positive, negative or null SOC effects in response to N addition exist. We evaluated the relative importance of plant molecular structure, soil physical properties and soil ecological stoichiometry in explaining the retention of SOC with and without N addition. We tracked the transformation of 13C pulse-labelled buffel grass (Cenchrus ciliaris L.), wheat (Triticum aestivum L.) and lucerne (Medicago sativa L.) material to the <53 μm silt + clay soil organic C fraction, hereafter named “humus”, over 365-days of incubation in four contrasting agricultural soils, with and without urea-N addition. We hypothesised that: a) humus retention would be soil and litter dependent; b) humus retention would be litter independent once litter C:N ratios were standardised with urea-N addition; and c) humus retention would be improved by urea-N addition. Two and three-way factorial analysis of variance indicated that 13C humus was consistently soil and litter dependent, even when litter C:N ratios were standardised, and that the effect of urea-N addition on 13C humus was also soil and litter dependent. A boosted regression analysis of the effect of 44 plant and soil explanatory variables demonstrated that soil biological and chemical properties had the greatest relative influence on 13C humus. Regression tree analyses demonstrated that the greatest gains in 13C humus occurred in soils of relatively low total organic C, dissolved organic C and microbial biomass C (MBC), or with a combination of relatively high MBC and low C:N ratio. The greatest losses in 13C humus occurred in soils with a combination of relatively high MBC and low total N or increasing C:N ratio. We conclude that soil variables involved in soil ecological stoichiometry exert a greater relative influence on incorporating organic matter as humus compared to plant molecular structure and soil physical properties. Furthermore, we conclude that the effect of N fertilisation on humus retention is dependent upon soil ecological stoichiometry.
Resumo:
The majority of Australian weeds are exotic plant species that were intentionally introduced for a variety of horticultural and agricultural purposes. A border weed risk assessment system (WRA) was implemented in 1997 in order to reduce the high economic costs and massive environmental damage associated with introducing serious weeds. We review the behaviour of this system with regard to eight years of data collected from the assessment of species proposed for importation or held within genetic resource centres in Australia. From a taxonomic perspective, species from the Chenopodiaceae and Poaceae were most likely to be rejected and those from the Arecaceae and Flacourtiaceae were most likely to be accepted. Dendrogram analysis and classification and regression tree (TREE) models were also used to analyse the data. The latter revealed that a small subset of the 35 variables assessed was highly associated with the outcome of the original assessment. The TREE model examining all of the data contained just five variables: unintentional human dispersal, congeneric weed, weed elsewhere, tolerates or benefits from mutilation, cultivation or fire, and reproduction by vegetative propagation. It gave the same outcome as the full WRA model for 71% of species. Weed elsewhere was not the first splitting variable in this model, indicating that the WRA has a capacity for capturing species that have no history of weediness. A reduced TREE model (in which human-mediated variables had been removed) contained four variables: broad climate suitability, reproduction in less or than equal to 1 year, self-fertilisation, and tolerates and benefits from mutilation, cultivation or fire. It yielded the same outcome as the full WRA model for 65% of species. Data inconsistencies and the relative importance of questions are discussed, with some recommendations made for improving the use of the system.
Resumo:
APSIM-ORYZA is a new functionality developed in the APSIM framework to simulate rice production while addressing management issues such as fertilisation and transplanting, which are particularly important in Korean agriculture. To validate the model for Korean rice varieties and field conditions, the measured yields and flowering times from three field experiments conducted by the Gyeonggi Agricultural Research and Extension Services (GARES) in Korea were compared against the simulated outputs for different management practices and rice varieties. Simulated yields of early-, mid- and mid-to-late-maturing varieties of rice grown in a continuous rice cropping system from 1997 to 2004 showed close agreement with the measured data. Similar results were also found for yields simulated under seven levels of nitrogen application. When different transplanting times were modelled, simulated flowering times ranged from within 3 days of the measured values for the early-maturing varieties, to up to 9 days after the measured dates for the mid- and especially mid-to-late-maturing varieties. This was associated with highly variable simulated yields which correlated poorly with the measured data. This suggests the need to accurately calibrate the photoperiod sensitivity parameters of the model for the photoperiod-sensitive rice varieties in Korea.
Resumo:
A review of factors that may impact on the capacity of beef cattle females, grazing semi-extensive to extensive pastures in northern Australia, to conceive, maintain a pregnancy and wean a calf was conducted. Pregnancy and weaning rates have generally been used to measure the reproductive performance of herds. However, this review recognises that reproductive efficiency and the general measures associated with it more effectively describe the economic performance of beef cattle enterprises. More specifically, reproductive efficiency is influenced by (1) pregnancy rate which is influenced by (i) age at puberty; (ii) duration of post-partum anoestrus; (iii) fertilisation failure and (iv) embryo survival; while (2) weight by number of calves per breeding female retained for mating is influenced by (i) cow survival; (ii) foetal survival; and (iii) calf survival; and (3) overall lifetime calf weight weaned per mating. These measures of reproductive efficiency are discussed in depth. Further, a range of infectious and non-infectious factors, namely, environmental, physiological, breed and genetic factors and their impact on these stages of the reproductive cycle are investigated and implications for the northern Australian beef industry are discussed. Finally, conclusions and recommendations to minimise reproductive inefficiencies based on current knowledge are presented.
Resumo:
Quantifying the impacts of rehabilitating degraded lands on soil health, pastures, runoff, erosion, nutrient and sediment movement.
Resumo:
Service provision project to be undertaken by staff from the Department of Employment, Economic Development and Innovation (DEEDI) to the Flower Association of Queensland Inc. (FAQI) to fulfil FAQI's requirements under the South East Queensland - Irrigation Futures project.
Resumo:
This project aims to develop integrated irrigation and nutrition management strategies under limited water for irrigators currently investing in overhead irrigation systems (CPLM) to minimize the learning lag in their use and optimize crop and economic performance.
Resumo:
The availability and quality of irrigation water has become an issue limiting productivity in many Australian vegetable regions. Production is also under competitive pressure from supply chain forces. Producers look to new technologies, including changing irrigation infrastructure, exploring new water sources, and more complex irrigation management, to survive these stresses. Often there is little objective information investigating which improvements could improve outcomes for vegetable producers, and external communities (e.g. meeting NRM targets). This has led to investment in inappropriate technologies, and costly repetition of errors, as business independently discover the worth of technologies by personal experience. In our project, we investigated technology improvements for vegetable irrigation. Through engagement with industry and other researchers, we identified technologies most applicable to growers, particularly those that addressed priority issues. We developed analytical tools for ‘what if’ scenario testing of technologies. We conducted nine detailed experiments in the Lockyer Valley and Riverina vegetable growing districts, as well as case studies on grower properties in southern Queensland. We investigated root zone monitoring tools (FullStop™ wetting front detectors and Soil Solution Extraction Tubes - SSET), drip system layout, fertigation equipment, and altering planting arrangements. Our project team developed and validated models for broccoli, sweet corn, green beans and lettuce, and spreadsheets for evaluating economic risks associated with new technologies. We presented project outcomes at over 100 extension events, including irrigation showcases, conferences, field days, farm walks and workshops. The FullStops™ were excellent for monitoring root zone conditions (EC, nitrate levels), and managing irrigation with poor quality water. They were easier to interpret than the SSET. The SSET were simpler to install, but required wet soil to be reliable. SSET were an option for monitoring deeper soil zones, unsuitable for FullStop™ installations. Because these root zone tools require expertise, and are labour intensive, we recommend they be used to address specific problems, or as a periodic auditing strategy, not for routine monitoring. In our research, we routinely found high residual N in horticultural soils, with subsequently little crop yield response to additional nitrogen fertiliser. With improved irrigation efficiency (and less leaching), it may be timely to re-examine nitrogen budgets and recommendations for vegetable crops. Where the drip irrigation tube was located close to the crop row (i.e. within 5-8 cm), management of irrigation was easier. It improved nitrogen uptake, water use efficiency, and reduced the risk of poor crop performance through moisture stress, particularly in the early crop establishment phases. Close proximity of the drip tube to the crop row gives the producer more options for managing salty water, and more flexibility in taking risks with forecast rain. In many vegetable crops, proximate drip systems may not be cost-effective. The next best alternative is to push crop rows closer to the drip tube (leading to an asymmetric row structure). The vegetable crop models are good at predicting crop phenology (development stages, time to harvest), input use (water, fertiliser), environmental impacts (nutrient, salt movement) and total yields. The two immediate applications for the models are understanding/predicting/manipulating harvest dates and nitrogen movements in vegetable cropping systems. From the economic tools, the major influences on accumulated profit are price and yield. In doing ‘what if’ analyses, it is very important to be as accurate as possible in ascertaining what the assumed yield and price ranges are. In most vegetable production systems, lowering the required inputs (e.g. irrigation requirement, fertiliser requirement) is unlikely to have a major influence on accumulated profit. However, if a resource is constraining (e.g. available irrigation water), it is usually most profitable to maximise return per unit of that resource.
Resumo:
Development of new agricultural industries in northern Australia is often perceived as a solution to changes in water availability that have occurred within southern Australia as a result of changes to government policy in response to and exacerbated by climate change. This report examines the likely private, social and community costs and benefits associated with the establishment of a cotton industry in the Burdekin. The research undertaken covers three spatial scales by modelling the response of cotton and to climate change at the crop and farm scale and linking this to regional scale modelling of the economy. Modelling crop growth as either a standalone crop or as part of a farm enterprise provides the clearest picture of how yields and water use will be affected under climate change. The alternative to this is to undertake very costly trials in environmental chambers. For this reason it is critical that funding for model development especially for crops being crop in novel environments be seen as a high priority for climate change and adaptation studies. Crop level simulations not only provide information on how the crop responds to climate change, they also illustrate that that these responses are the result of complex interactions and cannot necessarily be derived from the climate information alone. These simulations showed that climate change would lead to decreased cotton yields in 2030 and 2050 without the affect of CO2 fertilisation. Without CO2 fertilisation, yields would be decreased by 3.2% and 17.8%. Including CO2 fertilisation increased yields initially by 5.9%, but these were reduced by 3.6% in 2050. This still represents a major offset and at least ameliorates the impact of climate change on yield. To cope with the decreased in-crop rainfall (4.5% by 2030 and 15.8% in 2050) and an initial increase in evapotranspiration of 2% in 2030 and
Resumo:
There is an increasing need to understand what makes vegetation at some locations more sensitive to climate change than others. For savanna rangelands, this requires building knowledge of how forage production in different land types will respond to climate change, and identifying how location-specific land type characteristics, climate and land management control the magnitude and direction of its responses to change. Here, a simulation analysis is used to explore how forage production in 14 land types of the north-eastern Australian rangelands responds to three climate change scenarios of +3A degrees C, +17% rainfall; +2A degrees C, -7% rainfall; and +3A degrees C, -46% rainfall. Our results demonstrate that the controls on forage production responses are complex, with functional characteristics of land types interacting to determine the magnitude and direction of change. Forage production may increase by up to 60% or decrease by up to 90% in response to the extreme scenarios of change. The magnitude of these responses is dependent on whether forage production is water or nitrogen (N) limited, and how climate changes influence these limiting conditions. Forage production responds most to changes in temperature and moisture availability in land types that are water-limited, and shows the least amount of change when growth is restricted by N availability. The fertilisation effects of doubled atmospheric CO2 were found to offset declines in forage production under 2A degrees C warming and a 7% reduction in rainfall. However, rising tree densities and declining land condition are shown to reduce potential opportunities from increases in forage production and raise the sensitivity of pastures to climate-induced water stress. Knowledge of these interactions can be applied in engaging with stakeholders to identify adaptation options.
Resumo:
Global cereal production will need to increase by 50% to 70% to feed a world population of about 9 billion by 2050. This intensification is forecast to occur mostly in subtropical regions, where warm and humid conditions can promote high N2O losses from cropped soils. To secure high crop production without exacerbating N2O emissions, new nitrogen (N) fertiliser management strategies are necessary. This one-year study evaluated the efficacy of a nitrification inhibitor (3,4-dimethylpyrazole phosphate—DMPP) and different N fertiliser rates to reduce N2O emissions in a wheat–maize rotation in subtropical Australia. Annual N2O emissions were monitored using a fully automated greenhouse gas measuring system. Four treatments were fertilized with different rates of urea, including a control (40 kg-N ha−1 year−1), a conventional N fertiliser rate adjusted on estimated residual soil N (120 kg-N ha−1 year−1), a conventional N fertiliser rate (240 kg-N ha−1 year−1) and a conventional N fertiliser rate (240 kg-N ha−1 year−1) with nitrification inhibitor (DMPP) applied at top dressing. The maize season was by far the main contributor to annual N2O emissions due to the high soil moisture and temperature conditions, as well as the elevated N rates applied. Annual N2O emissions in the four treatments amounted to 0.49, 0.84, 2.02 and 0.74 kg N2O–N ha−1 year−1, respectively, and corresponded to emission factors of 0.29%, 0.39%, 0.69% and 0.16% of total N applied. Halving the annual conventional N fertiliser rate in the adjusted N treatment led to N2O emissions comparable to the DMPP treatment but extensively penalised maize yield. The application of DMPP produced a significant reduction in N2O emissions only in the maize season. The use of DMPP with urea at the conventional N rate reduced annual N2O emissions by more than 60% but did not affect crop yields. The results of this study indicate that: (i) future strategies aimed at securing subtropical cereal production without increasing N2O emissions should focus on the fertilisation of the summer crop; (ii) adjusting conventional N fertiliser rates on estimated residual soil N is an effective practice to reduce N2O emissions but can lead to substantial yield losses if the residual soil N is not assessed correctly; (iii) the application of DMPP is a feasible strategy to reduce annual N2O emissions from sub-tropical wheat–maize rotations. However, at the N rates tested in this study DMPP urea did not increase crop yields, making it impossible to recoup extra costs associated with this fertiliser. The findings of this study will support farmers and policy makers to define effective fertilisation strategies to reduce N2O emissions from subtropical cereal cropping systems while maintaining high crop productivity. More research is needed to assess the use of DMPP urea in terms of reducing conventional N fertiliser rates and subsequently enable a decrease of fertilisation costs and a further abatement of fertiliser-induced N2O emissions.