137 resultados para crop pest


Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is limited understanding about how insect movement patterns are influenced by landscape features, and how landscapes can be managed to suppress pest phytophage populations in crops. Theory suggests that the relative timing of pest and natural enemy arrival in crops may influence pest suppression. However, there is a lack of data to substantiate this claim. We investigate the movement patterns of insects from native vegetation (NV) and discuss the implications of these patterns for pest control services. Using bi-directional interception traps we quantified the number of insects crossing an NV/crop ecotone relative to a control crop/crop interface in two agricultural regions early in the growing season. We used these data to infer patterns of movement and net flux. At the community-level, insect movement patterns were influenced by ecotone in two out of three years by region combinations. At the functional-group level, pests and parasitoids showed similar movement patterns from NV very soon after crop emergence. However, movement across the control interface increased towards the end of the early-season sampling period. Predators consistently moved more often from NV into crops than vice versa, even after crop emergence. Not all species showed a significant response to ecotone, however when a response was detected, these species showed similar patterns between the two regions. Our results highlight the importance of NV for the recruitment of natural enemies for early season crop immigration that may be potentially important for pest suppression. However, NV was also associated with crop immigration by some pest species. Hence, NV offers both opportunities and risks for pest management. The development of targeted NV management may reduce the risk of crop immigration by pests, but not of natural enemies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Farming systems frameworks such as the Agricultural Production Systems simulator (APSIM) represent fluxes through the soil, plant and atmosphere of the system well, but do not generally consider the biotic constraints that function within the system. We designed a method that allowed population models built in DYMEX to interact with APSIM. The simulator engine component of the DYMEX population-modelling platform was wrapped within an APSIM module allowing it to get and set variable values in other APSIM models running in the simulation. A rust model developed in DYMEX is used to demonstrate how the developing rust population reduces the crop's green leaf area. The success of the linking process is seen in the interaction of the two models and how changes in rust population on the crop's leaves feedback to the APSIM crop modifying the growth and development of the crop's leaf area. This linking of population models to simulate pest populations and biophysical models to simulate crop growth and development increases the complexity of the simulation, but provides a tool to investigate biotic constraints within farming systems and further moves APSIM towards being an agro-ecological framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large weevil was found infesting macadamia nuts on the Atherton Tableland during the 1994/95 season. It was unrepresented in various Australian insect collections but thought to belong to the genus Sigastus. This paper reports some preliminary studies on its biology, pest status and control. From 4-6 weeks after first nut-set adult females commence laying single eggs through the husk, after first scarifying an oviposition site. The nut stalk is then cleaved leading to rapid abscission. Nuts were generally attacked up until hard shell formation. Weevil larvae consumed whole kernels, with % survival higher and larval duration shorter in larger nuts. Infestation rates increased with increasing nut diameter, reaching 72.8% of fallen nuts by mid-October. A crop loss of 30% could be attributed to weevils in an unsprayed orchard. However, adult weevils are very susceptible to both carbaryl and methidathion sprays. In addition, exposure of infested nuts to full sunlight over several weeks kills 100% of larvae. Crops should be surveyed for weevil damage from the 5-10 mm diameter stage until mid-December. Methidathion used as an initial spray for fruitspotting bugs should provide control. Organic growers are advised to sweep infested nuts into mown interrows where solarisation will kill larvae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two species of root-lesion nematode (predominantly Pratylenchus thornei but also P. neglectus) are widespread pathogens of wheat and other crops in Australia's northern grain belt, a subtropical region with deep, fertile clay soils and a summer-dominant rainfall pattern. Losses in grain yield from P. thornei can be as high as 70% for intolerant wheat cultivars. This review focuses on research which has led to the development of effective integrated management programs for these nematodes. It highlights the importance of correct identification in managing Pratylenchus species, reviews the plant breeding work done in developing tolerant and resistant cultivars, outlines the methods used to screen for tolerance and resistance, and discusses how planned crop sequencing with tolerant and partially resistant wheat cultivars, together with crops such as sorghum, sunflower, millets and canaryseed, can be used to reduce nematode populations and limit crop damage. The declining levels of soil organic matter in cropped soils are also discussed with reference to their effect on soil health and biological suppression of root-lesion nematodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prior to the 1980s, arthropod pest control in Queensland strawberries was based entirely on calendar sprays of insecticides (mainly endosulfan, triclorfon, dimethoate and carbaryl) and a miticide (dicofol). These chemicals were applied frequently and spider mite outbreaks occurred every season. The concept of integrated pest management (IPM) had not been introduced to growers, and the suggestion that an alternative to the standard chemical pest control recipe might be available, was ignored. Circumstances changed when the predatory mite, Phytoseiulus persimilis Athios-Henriot, became available commercially in Australia, providing the opportunity to manage spider mites, the major pests of strawberries, with an effective biological agent. Trials conducted on commercial farms in the early 1980s indicated that a revolution in strawberry pest management was at hand, but the industry generally remained sceptical and afraid to adopt the new strategy. Lessons are learnt from disasters and the consequent monetary loss that ensues, and in 1993, such an event relating to ineffective spider mite control, spawned the revolution we had to have. Farm-oriented research and evolving grower perspectives have resulted in the acceptance of biological control of spider mites using Phytoseiulus persimilis and the 'pest in first' technique, and it now forms the basis of an IPM system that is used on more than 80% of the Queensland strawberry crop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors overview integrated pest management (IPM) in grain crops in north-eastern Australia, which is defined as the area north of latitude 32°S. Major grain crops in this region include the coarse grains (winter and summer cereals), oilseeds and pulses. IPM in these systems is complicated by the diversity of crops, pests, market requirements and cropping environments. In general, the pulse crops are at greatest risk, followed by oilseeds and then by cereal grains. Insecticides remain a key grain pest management tool in north-eastern Australia. IPM in grain crops has benefited considerably through the increased adoption of new, more selective insecticides and biopesticides for many caterpillar pests, in particular Helicoverpa spp. and loopers, and the identification of pest-crop scenarios where spraying is unnecessary (e.g. for most Creontiades spp. populations in soybeans). This has favoured the conservation of natural enemies in north-eastern Australia grain crops, and has arguably assisted in the management of silverleaf whitefly in soybeans in coastal Queensland. However, control of sucking pests and podborers such as Maruca vitrata remains a major challenge for IPM in summer pulses. Because these crops have very low pest-damage tolerances and thresholds, intervention with disruptive insecticides is frequently required, particularly during podfill. The threat posed by silverleaf whitefly demands ongoing multi-pest IPM research, development and extension as this pest can flare under favourable seasonal conditions, especially where disruptive insecticides are used injudiciously. The strong links between researchers and industry have facilitated the adoption of IPM practices in north-eastern Australia and augers well for future pest challenges and for the development and promotion of new and improved IPM tactics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bemisia tabaci, biotype B, commonly known as the silverleaf whitefly (SLW) is an alien species that invaded Australia in the mid-90s. This paper reports on the invasion ecology of SLW and the factors that are likely to have contributed to the first outbreak of this major pest in an Australian cotton cropping system, population dynamics of SLW within whitefly-susceptible crop (cotton and cucurbit) and non-crop vegetation (sowthistle, Sonchus spp.) components of the cropping system were investigated over four consecutive growing seasons (September-June) 2001/02-2004/05 in the Emerald Irrigation Area (EIA) of Queensland, Australia. Based on fixed geo-referenced sampling sites, variation in spatial and temporal abundance of SLW within each system component was quantified to provide baseline data for the development of ecologically sustainable pest management strategies. Parasitism of large (3rd and 4th instars) SLW nymphs by native aphelinid wasps was quantified to determine the potential for natural control of SLW populations. Following the initial outbreak in 2001/02, SLW abundance declined and stabilised over the next three seasons. The population dynamics of SLW is characterised by inter-seasonal population cycling between the non-crop (weed) and cotton components of the EIA cropping system. Cotton was the largest sink for and source of SLW during the study period. Over-wintering populations dispersed from weed host plant sources to cotton in spring followed by a reverse dispersal in late summer and autumn to broad-leaved crops and weeds. A basic spatial source-sink analysis showed that SLW adult and nymph densities were higher in cotton fields that were closer to over-wintering weed sources throughout spring than in fields that were further away. Cucurbit fields were not significant sources of SLW and did not appear to contribute significantly to the regional population dynamics of the pest. Substantial parasitism of nymphal stages throughout the study period indicates that native parasitoid species and other natural enemies are important sources of SLW mortality in Australian cotton production systems. Weather conditions and use of broad-spectrum insecticides for pest control are implicated in the initial outbreak and on-going pest status of SLW in the region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of soybean (Glycine max) and dry bean (Phaseolus vulgaris) to feeding by Helicoverpa armigera during the pod-fill stage was studied in irrigated field cages over three seasons to determine the relationship between larval density and yield loss, and to develop economic injury levels. H. armigera intensity was calculated in Helicoverpa injury equivalent (HIE) units, where 1 HIE was the consumption of one larva from the start of the infestation period to pupation. In the dry bean experiment, yield loss occurred at a rate 6.00 ± 1.29 g/HIE while the rates of loss in the three soybean experiments were 4.39 ± 0.96 g/HIE, 3.70 ± 1.21 g/HIE and 2.12 ± 0.71 g/HIE. These three slopes were not statistically different (P > 0.05) and the pooled estimate of the rate of yield loss was 3.21 ± 0.55 g/HIE. The first soybean experiment also showed a split-line form of damage curve with a rate of yield loss of 26.27 ± 2.92 g/HIE beyond 8.0 HIE and a rapid decline to zero yield. In dry bean, H. armigera feeding reduced total and undamaged pod numbers by 4.10 ± 1.18 pods/HIE and 12.88 ± 1.57 pods/HIE respectively, while undamaged seed numbers were reduced by 35.64 ± 7.25 seeds/HIE. In soybean, total pod numbers were not affected by H. armigera infestation (out to 8.23 HIE in Experiment 1) but seed numbers (in Experiments 1 and 2) and the number of seeds/pod (in all experiments) were adversely affected. Seed size increased with increases in H. armigera density in two of the three soybean experiments, indicating plant compensatory responses to H. armigera feeding. Analysis of canopy pod profiles indicated that loss of pods occurred from the top of the plant downwards, but with an increase in pod numbers close to the ground at higher pest densities as the plant attempted to compensate for damage. Based on these results, the economic injury levels for H. armigera on dry bean and soybean are approximately 0.74 HIE and 2.31 HIE/m2, respectively (0.67 and 2.1 HIE/row-m for 91 cm rows).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of vegetative soybean (Glycine max) to Helicoverpa armigera feeding was studied in irrigated field cages over three years in eastern Australia to determine the relationship between larval density and yield loss, and to develop economic injury levels. Rather than using artificial defoliation techniques, plants were infested with either eggs or larvae of H. armigera, and larvae allowed to feed until death or pupation. Larvae were counted and sized regularly and infestation intensity was calculated in Helicoverpa injury equivalent (HIE) units, where 1 HIE was the consumption of one larva from the start of the infestation period to pupation. In the two experiments where yield loss occurred, the upper threshold for zero yield loss was 7.51 ± 0.21 HIEs and 6.43 ± 1.08 HIEs respectively. In the third experiment, infestation intensity was lower and no loss of seed yield was detected up to 7.0 HIEs. The rate of yield loss/HIE beyond the zero yield loss threshold varied between Experiments 1 and 2 (-9.44 ± 0.80 g and -23.17 ± 3.18 g, respectively). H. armigera infestation also affected plant height and various yield components (including pod and seed numbers and seeds/pod) but did not affect seed size in any experiment. Leaf area loss of plants averaged 841 and 1025 cm2/larva in the two experiments compared to 214 and 302 cm2/larva for cohort larvae feeding on detached leaves at the same time, making clear that artificial defoliation techniques are unsuitable for determining H. armigera economic injury levels on vegetative soybean. Analysis of canopy leaf area and pod profiles indicated that leaf and pod loss occurred from the top of the plant downwards. However, there was an increase in pod numbers closer to the ground at higher pest densities as the plant attempted to compensate for damage. Defoliation at the damage threshold was 18.6 and 28.0% in Experiments 1 and 2, indicating that yield loss from H. armigera feeding occurred at much lower levels of defoliation than previously indicated by artificial defoliation studies. Based on these results, the economic injury level for H. armigera on vegetative soybean is approximately 7.3 HIEs/row-metre in 91 cm rows or 8.0 HIEs/m2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sonchus oleraceus (common sowthistle) is a dominant weed and has increased in prevalence in conservation cropping systems of the subtropical grain region of Australia. Four experiments were undertaken to define the environmental factors that favor its germination, emergence, and seed persistence. Seeds were germinated at constant temperatures between 5 and 35C and water potentials between 0 and -1.4 MPa. The maximum germination rate of 86-100% occurred at 0 and -0.2 MPa, irrespective of the temperature when exposed to light (12 h photoperiod light/dark), but the germination rate was reduced by 72% without light. At water potentials of -0.6 to -0.8 MPa, the germination rate was reduced substantially by higher temperatures; no seed germinated at a water potential >-1.0 MPa. Emergence and seed persistence were measured over 30 months following seed burial at 0 (surface), 1, 2, 5, and 10 cm depths in large pots that were buried in a south-eastern Queensland field. Seedlings emerged readily from the surface and 1 cm depth, with no emergence from below the 2 cm depth. The seedlings emerged during any season following rain but, predominantly, within 6 months of planting. Seed persistence was short-term on the soil surface, with 2% of seeds remaining after 6 months, but it increased with the burial depth, with 12% remaining after 30 months at 10 cm. Thus, a minimal seed burial depth with reduced tillage and increased surface soil water with stubble retention has favored the proliferation of this weed in any season in a subtropical environment. However, diligent management without seed replenishment will greatly reduce this weed problem within a short period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of three cropping histories (sugarcane, maize and soybean) and two tillage practices (conventional tillage and direct drill) on plant-parasitic and free-living nematodes in the following sugarcane crop was examined in a field trial at Bundaberg. Soybean reduced populations of lesion nematode (Pratylenchus zeae) and root-knot nematode (Meloidogyne javanica) in comparison to previous crops of sugarcane or maize but increased populations of spiral nematode (Helicotylenchus dihystera) and maintained populations of dagger nematode (Xiphinema elongatum). However the effect of soybean on P zeae and M. javanica was no longer apparent 15 weeks after planting sugarcane, while later in the season, populations of these nematodes following soybean were as high as or higher than maize or sugarcane. Populations of P zeae were initially reduced by cultivation but due to strong resurgence tended to be higher in conventionally tilled than direct drill plots at the end of the plant crop. Even greater tillage effects were observed with M. javanica and X. elongatum, as nematode populations were significantly higher in conventionally tilled than direct drill plots late in the season. Populations of free-living nematodes in the upper 10 cm of soil were initially highest following soybean, but after 15, 35 and 59 weeks were lower than after sugarcane and contained fewer omnivorous and predatory nematodes. Conventional tillage increased populations of free-living nematodes in soil in comparison to direct drill and was also detrimental to omnivorous and predatory nematodes. These results suggest that crop rotation and tillage not only affect plant-parasitic nematodes directly, but also have indirect effects by impacting on natural enemies that regulate nematode populations. More than 2 million nematodes/m(2) were often present in crop residues on the surface of direct drill plots. Bacterial-feeding nematodes were predominant in residues early in the decomposition process but fungal-feeding nematodes predominated after 15 weeks. This indicates that fungi become an increasingly important component of the detritus food web as decomposition proceeds, and that that the rate of nutrient cycling decreases with time. Correlations between total numbers of free-living nematodes and mineral N concentrations in crop residues and surface soil suggested that the free-living nematode community may provide an indication of the rate of mineralisation of N from organic matter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work evaluated the following aspects of the use of exclusion netting in low chill stone fruit: the efficacy of protection from fruit fly for this highly susceptible crop; the effects on environmental factors; and the effects on crop development. Concurrently, an economic viability study on the use of exclusion netting was undertaken. The trial site was a 0.6-ha block of low chill stone fruit at Nambour, south-east Queensland, Australia. In this area, populations of Queensland fruit fly (Bactrocera tryoni) are known to be substantial, particularly in spring and summer. The trial block contained healthy 4-year-old trees as follows: 96 peach trees (Prunus persica cv. Flordaprince) and 80 nectarine trees (40 P. persica var. nucipersica cv. White Satin and 40 P. persica var. nucipersica cv. Sunwright). Exclusion netting was installed over approximately half of the block in february 2001. The net was a UV-stabilized structural knitted fabric made from high-density polyethylene yarn with a 10-year prorated UV degradation warranty. The results demonstrated the efficacy of exclusion netting in the control of fruit flies. Exclusion netting increased maximum temperatures by 4.4 deg C and decreased minimum temperatures by 0.5 deg C. Although exclusion netting reduced irradiance by approximately 20%, it enhanced fruit development by 7-10 days and improved fruit quality by increasing sugar concentration by 20-30% and colour intensity by 20%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review here research on semiochemicals for cotton pest management carried out in successive Cotton Co-operative Research Centres from 1998 to 2012. Australian cotton is now dominated by transgenic (Bt) varieties, which provide a strong platform for integrated pest management of key pests such as Helicoverpa spp., but new technologies are required to manage the development of resistance in Helicoverpa spp. to transgenic cotton and the problems posed by emerging and secondary pests, especially sucking insects. A long-range attractant for Helicoverpa moths, based on plant volatiles, has been commercialised as Magnet®. The product has substantial area-wide impacts on moth populations, and only limited effects on beneficial insects. Potential roles are being investigated for this product in resistance management of Helicoverpa spp. on transgenic cotton. Short-range, non-volatile compounds on organ surfaces of plants that do not support development of Helicoverpa spp. have been identified; these compounds deter feeding or oviposition, or are toxic to insect pests. One such product, Sero X®, is effective on Helicoverpa spp. and sucking pests such as whiteflies (Bemisia tabaci), green mirids (Creontiades dilutus), and other hemipteran insects, and is in the advanced stages of commercialisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breaches of biosecurity, leading to incursions by invasive species, have the potential to cause substantial economic, social and environmental losses, including drastic reduction in biodiversity. It is argued that improving biosecurity reduces risk to biodiversity, while maintaining stable ecosystems through biodiversity can be a safeguard against biosecurity breaches. The global costs of invasive alien species (IAS) have been estimated at around US$350 billion, while alien invertebrate and vertebrate pests and weeds are estimated to cost Australia at least $7 billion a year. A striking, current, example is the incursion by Myrtle Rust (Puccinia psidii) an organism which can infect all members of the Myrtaceae, the most important family in the Australian flora. Myrtle rust was first detected on a property on the central coast of New South Wales in late April 2010. Two years later the disease has been detected in numerous locations in Queensland and New South Wales ranging from commercial plant nurseries and public amenities to large areas of bushland. This particular breach of biosecurity will, inevitably, diminish biodiversity of flora and fauna over large areas of the continent. Integrated pest management (IPM), an enrichment of diversity in managing invasive and other pest species, offers the best opportunity to address problems such as these. Australia's response to increasing biosecurity risk is comprehensive and includes national networking of scientists engaged in a complex program of biosecurity research and development, including studies of IPM. This network is being enhanced by the development of international linkages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the role of plant species in crops, pasture and native vegetation remnants in supporting agronomic pests and their predators. The study was conducted in three Australian States and across 290 sites sampled monthly for two years. Pastures played a key role in harbouring pest species consistent across States, while native vegetation hosted relatively more predators than other habitat types within each State. Furthermore, native plant species supported the lowest pest density and more predators than pests; in contrast, 75 of the exotic weed species surveyed hosted more pests than predators. Despite the role of pasture in harbouring pests, we found in NSW that pasture also supported the highest proportion of juvenile predators, while native vegetation remnants had the lowest. Our results indicate that non-crop habitat (native remnants or pasture) with few exotic weeds supports high predator and low pest arthropod densities, and that weeds are associated with high pest densities. By linking broad response variables such as ‘all pests’ with specific predictors such as ‘plant species’, our study will inform on-farm management actions of which weeds to control and which natives to plant or regenerate. This study shows the importance of knowing the function of habitats and plants species in supporting pests and predators in agricultural landscapes across multiple regions.